<table>
<thead>
<tr>
<th>TAB</th>
<th>DESCRIPTION</th>
<th>ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BOISE STATE UNIVERSITY – DOCTORATE PROGRAM – PH.D. IN BIMOLECULAR SCIENCES</td>
<td>Motion to Approve</td>
</tr>
</tbody>
</table>
BOISE STATE UNIVERSITY

SUBJECT
Approval of Full Proposal to offer a New Doctorate Program - Doctor of Philosophy (Ph.D.) in Biomolecular Sciences

APPLICABLE STATUTE, RULE, OR POLICY
Idaho State Board of Education Governing Policies & Procedures, Section III.G.4. and 5.

BACKGROUND/DISCUSSION
Boise State University is proposing a new interdisciplinary doctoral program in Biomolecular Sciences. The proposed program will be offered cooperatively by three departments in the College of Arts and Sciences, Biological Sciences, Chemistry and Biochemistry, and Physics.

Faculty members in those departments have built the solid foundation of external funding necessary for highly successful doctoral science programs, having been awarded more than $26 million in the previous five years. The proposed program builds on the experience of these departments of delivering and/or participating in thesis-based master's programs in biology, chemistry, and materials science and engineering. The program will include participation from faculty members in several other departments (Materials Science & Engineering, Mechanical & Biomedical Engineering, Computer Science, and Kinesiology) as well as participation by researchers at off-campus organizations (such as the Department of Veterans Affairs Medical Center, the Mountain States Tumor and Medical Research Institute, and the Idaho Bureau of Laboratories).

Although there are similar programs at the University of Idaho and Idaho State University, the proposed program is unique in Idaho, explicitly integrating the physical sciences into the biological sciences to create a cross-disciplinary degree. Per the Board’s process for Ph.D. program consideration, an external review of the proposal was conducted. The review team was comprised of Dr. Lee Weber (Emeritus Faculty member University of Nevada, Reno), Dr. Sebastian Wachsmann-Hogiu (Facility Director of the NSF Science and Technology Center and Associate Professor of Pathology at UC Davis), and Dr. Judith Van Houten (University Distinguished Professor at the University of Vermont and Director of Vermont INBRE).

The proposed program will facilitate continued collaboration among Idaho’s three universities. It builds upon the highly successful statewide IDEA Network for Biomedical Research Excellence (INBRE) program, which has brought more than $44 million in federal funding to Idaho to build infrastructure for National Institute of Health (NIH)-fundable research through a collaborative effort among postsecondary institutions of Idaho.
A principal aim of INBRE is to improve the overall research productivity and grant competitiveness of states such as Idaho that have been less successful in receiving federal grants from NIH. The creation of the Ph.D. program at BSU as a stated deliverable of the Idaho INBRE program was specifically lauded by the NIH reviewers because it will broaden the range of grant opportunities to BSU, enhance collaboration between institutions, and impact Idaho’s ability to compete for NIH funding. One specific example of broadening opportunities is training grants funded through the NIH Center for Biomedical Research Excellence (COBRE) program, which run in the millions of dollars but require that participating institutions grant Ph.D. degrees.

The proposed program will also increase opportunities for the sharing of coursework and faculty expertise among institutions. With a Ph.D. program at Boise, existing and future collaborations on research grants will be enhanced by the sharing of membership on graduate committees across institutions, and by the sharing of doctoral-level courses and seminars via distance delivery.

The proposed program will provide substantial economic and societal benefit to the region, the state, and the nation. Faculty and students in the program will address a wide range of biomedical research topics at the molecular level in areas that include cancer biology, immune disorders, neuropathology, molecular toxicology, regenerative medicine, antibiotic development, vaccine development, chemotherapy development, and nanomedicine. Molecular-level research at Boise State will aid in the understanding and treatment of diseases such as breast cancer, leukemia, osteoarthritis, Alzheimer’s and Parkinson’s disease, asthma, cholera, West Nile Virus, and drug resistant bacterial infection. Besides the direct benefits of discoveries resulting from that work, there will be substantial potential for collaboration with the area’s biomedical entities. Letters of support were provided by St. Luke’s Health System, St. Alphonsus Medical System, the Department of Veterans Affairs Medical Center, St. Luke’s Mountain States Tumor and Medical Research Institute, and the Idaho Bureau of Laboratories.

Additionally, research in the proposed program will support the development of Idaho’s biotechnology industry. For example, present projects involve development of potentially-patentable materials such as artificial cartilage, biofuels, new chemotherapeutic drugs, nano-based approaches for the treatment of cancer, and biosensors for detection of pathogens. In addition, the program will provide educational opportunities not currently available in the area, and thereby strengthen our workforce and make the area more attractive to businesses that may consider locating here. Letters of support were provided by several local biotechnology companies: Sapidyne Instruments, Inc.; Syngenta Seeds, Inc.; O.D.260, Inc; Episciences, Inc.; and Boise Technology, Inc. Additionally, letters of support were provided by the Idaho Department of Agriculture and the Center for Advanced Energy Studies at INL.
BSU has made substantial investments in preparing for the proposed program. More than $10 million has been invested in the development of facilities that support biomolecular research. An NIH grant for $4 million is funding the creation of an animal facility. Nine faculty hires have been targeted in the biomolecular sciences in recent years, and the university has set aside funds to the hire two additional faculty members and five new graduate assistantships.

The results of the external review of the program were very positive. The executive summary of their report reads as follows (emphasis added); the entire report and BSU’s response is attached to the full proposal.

“The review team was extremely impressed with the quality of research and graduate education and the remarkable level of extramural funding of the faculty engaged in biomolecular research whom we met at Boise State University. Most remarkable is that these achievements were accomplished with only a MSc program. A new level of research accomplishments can be reached with the implementation of an interdisciplinary PhD graduate program. It will foster the kind of collaborative research that is favored by federal and other agencies and produce uniquely trained students to satisfy the needs of a growing biotech and medical community in Idaho.

The administrative and community support for this program is very evident. It will build upon the INBRE investments in the state to enhance the network of investigators and institutions. This proposed program does not duplicate programs elsewhere in the state and will present opportunities for investigators in the entire state system to participate in this collaborative, interdisciplinary research with PhD students.

Our recommendation is that this program be implemented immediately.”

IMPACT

The University of Idaho was the lead on both INBRE grants and had to approve Boise State’s action plan, which included the development of a biomolecular Ph.D. as a deliverable, with a focus on building a particular strength in protein structure function. The University of Idaho INBRE office has written several letters of support for the Ph.D. program. With regard to the current programs at the University of Idaho, they have expressed concerns that there is an overlap in on-going research in the areas of Biochemistry, Bioinformatics, Cell Biology, Developmental Biology, Vaccine Development, Protein Structure Function, Plant Molecular Cell Biology, Immunology, Neuroscience, Molecular Genetics, Microbiology, Nanomaterials, Biophysics.

With regard to the current programs at Idaho State University, they initially felt there was significant overlap in the research areas of Biochemistry, Cancer Biology, Developmental Biology, Immunology, Neuroscience, Molecular Genetics, Microbiology, and Plant Molecular Cell Biology. However, after
receiving additional information, Idaho State while maintaining concerns for the sustainability of three programs, wrote a letter of support that was read aloud at the September 2011 CAAP meeting.

There is likely overlap in the programs between the University of Idaho and Idaho State University. The University of Idaho expressed concerns regarding the duplication in Idaho State University's Ph.D. in Microbiology that was approved by the Board in April 2010.

The current degree program offerings at the University of Idaho are:
1) Ph.D. in Bioinformatics and Computational Biology (approved by the Board January 2003)
2) Ph.D. in Biology – which is a broad Ph.D. covering all areas of Biological Sciences (no records for when program was approved by the Board, likely took place prior to 2001 when Board office began its tracking system)
3) Ph.D. in Microbiology, Molecular Biology and Biochemistry – which includes Microbiology, Molecular Biology, Cell Biology, Developmental Biology, Biochemistry (no records for when program was approved by the Board, likely took place prior to 2001 when Board office began its tracking system)

The current degree program offerings at Idaho State University are:
1) Ph.D. in Biology – which is a broad Ph.D. potentially covering all areas of the Biological Sciences (no records for when program was approved by the Board, likely took place prior to 2001 when Board office began its tracking system)
2) Ph.D. in Pharmaceutical Sciences – which includes Pharmacology, Pharmaceutics, Drug Discovery and Development (no records for when program was approved by Board, likely took place prior to 2001 when Board office began its tracking system)
3) Ph.D. in Microbiology – which includes Microbiology (Molecular Biology, Biochemistry and Physiology, Genetics, Biotechnology, Virology, Industrial and Environmental Microbiology, and Medical Microbiology) (approved by the Board April 2010)

Attachments 1 and 2 depict fiscal impact of the proposed program, but they differ substantially in the specifics of what they depict and in the total dollars shown for each year.

For personnel costs, Attachment 1 depicts only the value of the FTE specifically devoted to the Ph.D. program, and includes reallocation of FTE from existing faculty and staff lines as well as a portion of the FTE of new faculty and staff lines. Attachment 1 also includes an estimate of personnel and capital outlay expenses that will be covered by federal grants, estimated at $1,366,856 in FY2015.
In contrast, Attachment 2 focuses on future funding that will support the new program, part of which has already been committed to biomolecular sciences activities at BSU and part of which remains to be committed. The funding that is already committed is part of our overall commitment to the INBRE grant, and will be spent regardless of Ph.D. Approval. Importantly, Attachment 2 includes the entire cost of each new faculty and staff position, even if those positions are only partially assigned to the new program. This is because the university must fund each new position in its entirety, not simply that portion of each position assigned to the new program. Because Attachment 2 only includes committed funds, it only shows the grant funds associated with the initial two years of support for one of the new faculty lines. Other grant funded positions are not depicted in Attachment 2.

To illustrate the difference between the tables, an example will be used: an existing faculty member will reallocate 0.15FTE to the new program and a new faculty member will allocate 0.25FTE to the new program. Attachment 1 would include the value of 0.15FTE from the existing faculty member and 0.25FTE of the new faculty member, thereby reflecting the value of the effort reallocated and newly allocated to the new program. Attachment 2, in contrast, recognizes that even though the new faculty member will devote 0.25 FTE to the new program, the university must fund the entire 1.0FTE of that faculty member in order to proceed with the hire of that person. Therefore, Attachment 2 would include the value of 1.0FTE of the new faculty member to reflect the entire cost of that individual. But Attachment 2 would not include any value for the existing faculty member because no new funding is needed for the existing faculty member.

ATTACHMENTS
- Attachment 1 – Fiscal Impact and Budget
- Attachment 2 – Future Funding for Supporting Program
- Attachment 3 – Full Proposal including external review, response to external review, letters of support, INBRE/BRIN materials, and faculty CVs.

STAFF COMMENTS AND RECOMMENDATIONS
Board staff believes Boise State University (BSU) has put together a thorough and comprehensive proposal for a Ph.D. in Biomolecular Science. While there is overlap and duplication in the programs and their research areas, there are significant synergies taking place among the three institutions in the broader biomolecular research areas. BSU has also very unique pieces to this proposed program which distinguish it from the other two institutions’ program. With the creation of this program there is significant potential to increase NIH funding opportunities for Idaho. Boise State could better clarify the increased opportunities for collaboration among the three institutions.

As it stands now, pursuant to Board Policy III.Z there is not a biology or biological science Statewide Program Responsibility assigned to any of the universities,
therefore it would fall under the category of Boise State’s Regional Program Responsibility. There is a Primary Emphasis in the area of Biological Sciences assigned to Idaho State University, but not in the interdisciplinary areas of biomolecular sciences and biophysics.

BSU’s program is consistent with their current Regional Eight-Year Plan for delivery of academic programs in the Southwest Region. It’s important to note that institutions are currently working on their Five-Year Plans pursuant to the recently clarified Board Policy III.Z. The Five-Year Plans are scheduled to be presented to the Board at their August 2012 Board meeting.

“The goal of INBRE-2 is to continue/enhance successful programs in order to catalyze Idaho’s transformation to competitiveness through core laboratory facilities, support services, faculty research, student educational and research opportunities and community outreach.” (pg. 3, INBRE External Review) The Board must consider whether or not this can be accomplished if the Board does not approve BSU’s Ph.D. proposal, as it is a key deliverable of the INBRE proposal. The Board must also consider the risk of losing future funding if this program is not approved.

Due to the funding requirements associated with the INBRE grant from NIH, BSU has over $400,000 committed to this program, with an additional $30,000 committed from the College of Arts and Sciences. They already have nearly half of the expenses at build out. There will be an additional $623,323 on-going new dollars required. The program funding is front-loaded the first two years and the on-going funding is significantly less. BSU proposes to use any new state general funds or EWA funding for faculty positions as they are the highest priority for new dollars. Reallocation of internal budgets is also a tool for providing new resources to the program. This might occur at the department, college, or university level – or all three. This leads to outstanding questions regarding the resource allocations to be used for sustainability.

BOARD ACTION
I move to approve the request by Boise State University to offer a Doctor of Philosophy in Biomolecular Sciences.

Moved by __________ Seconded by __________ Carried Yes ____ No ______
Fiscal Impact and Budget: includes FTE from existing faculty and staff lines reallocated to the new program and FTE of new faculty and staff lines allocated to the new program. This table represents a summarization of the Section 6 of the full proposal (pages 28-30 of the Full Proposal)

<table>
<thead>
<tr>
<th></th>
<th>FY 2013</th>
<th>FY 2014</th>
<th>FY 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Personnel</td>
<td>$897,576</td>
<td>$1,203,237</td>
<td>$1,898,624</td>
</tr>
<tr>
<td>B. Operating Expenditures</td>
<td>$36,000</td>
<td>$36,000</td>
<td>$36,000</td>
</tr>
<tr>
<td>C. Capital Outlay</td>
<td>$495,000</td>
<td>$495,000</td>
<td>$495,000</td>
</tr>
<tr>
<td>D. Physical Facilities</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E. Indirect Costs</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Total Expenditures</td>
<td>$1,428,576</td>
<td>$1,734,237</td>
<td>$2,429,624</td>
</tr>
<tr>
<td>Revenue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Source of Funds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Appropriated funds -- Reallocation</td>
<td>$568,830</td>
<td>$809,958</td>
<td>$1,062,768</td>
</tr>
<tr>
<td>2. Appropriated funds -- New MCO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Federal funds</td>
<td>$859,746</td>
<td>$924,279</td>
<td>$1,366,856</td>
</tr>
<tr>
<td>4. Other grants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Fees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Revenues</td>
<td>$1,428,576</td>
<td>$1,734,237</td>
<td>$2,429,624</td>
</tr>
<tr>
<td>B. Nature of Funds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Recurring*</td>
<td>$978,576</td>
<td>$1,284,237</td>
<td>$1,979,624</td>
</tr>
<tr>
<td>2. Non-recurring**</td>
<td>$450,000</td>
<td>$450,000</td>
<td>$450,000</td>
</tr>
<tr>
<td>Total Revenues</td>
<td>$1,428,576</td>
<td>$1,734,237</td>
<td>$2,429,624</td>
</tr>
</tbody>
</table>
Future funding that will support the proposed program. First half of table depicts funding already committed under the INBRE grant to biomolecular sciences, regardless of PhD approval. Second half depicts additional new funding required. A fourth year, FY 2016, is depicted because that year best depicts the ongoing funding required for the program. This table represents a summarization of the table found on page 33 of the Full Proposal.

Funds already committed to the NIH INBRE grant

<table>
<thead>
<tr>
<th></th>
<th>FY2013</th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>305,657</td>
<td>412,204</td>
<td>440,219</td>
<td>448,601</td>
</tr>
<tr>
<td>OE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>30,000</td>
<td>300,000</td>
<td>30,000</td>
<td>400,000</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Funds</td>
<td>335,657</td>
<td>300,000</td>
<td>442,204</td>
<td>400,000</td>
</tr>
</tbody>
</table>

Source of Commitment

<table>
<thead>
<tr>
<th>Source</th>
<th>FY2013</th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grant Funded</td>
<td>98,353</td>
<td>100,179</td>
<td></td>
<td></td>
</tr>
<tr>
<td>College of Arts & Sciences</td>
<td>30,000</td>
<td>100,000</td>
<td>30,000</td>
<td>200,000</td>
</tr>
<tr>
<td>Univ Central Funds</td>
<td>207,304</td>
<td>200,000</td>
<td>312,026</td>
<td>200,000</td>
</tr>
</tbody>
</table>

New funds needed for the PhD in Biomolecular Sciences

<table>
<thead>
<tr>
<th></th>
<th>FY2013</th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>344,608</td>
<td>98,353</td>
<td>562,029</td>
<td>575,726</td>
</tr>
<tr>
<td>OE</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Capital</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indirects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Funds Required</td>
<td>379,608</td>
<td>98,353</td>
<td>597,029</td>
<td>610,726</td>
</tr>
</tbody>
</table>
IDAHO STATE BOARD OF EDUCATION
ACADEMIC/PROFESSIONAL-TECHNICAL EDUCATION
FULL PROPOSAL

Submitted by:

Boise State University
Institution Submitting Proposal

College of Arts and Sciences
Name of College, School, or Division

Departments of Biological Sciences, Chemistry & Biochemistry, and Physics
Name of Department(s) or Area(s)

A New, Expanded, or Off-Campus Instructional Program Leading to:

Doctor of Philosophy in Biomolecular Sciences
CIP: 26.0210 (biochemistry, biophysics, and molecular biology)
Degree/Certificate & 2010 CIP

Program Change, Off-Campus Component

Fall 2012
Proposed Starting Date

This proposal has been reviewed and approved by:

[Signatures and dates for approval]
Before completing this form, refer to "Board Policy Section III.G. Program Approval and Discontinuance.
1. Describe the nature of the request. For example, is this a request for a new on-campus program? Is this request for the expansion or extension of an existing program, or a new cooperative effort with another institution or business/industry or a contracted program costing greater than $250,000 per year? Is this program to be delivered off-campus or at a new branch campus? Attach any formal agreements established for cooperative efforts, including those with contracting party(ies). Is this request a substantive change as defined by the NWASC criteria?

Boise State University proposes the creation of a new Ph.D. program in Biomolecular Sciences. Over the last decade, the sciences have evolved dramatically to become less focused on traditional single disciplines and much more focused on interdisciplinary approaches. That approach extends to industry, which now often seeks highly trained professionals with expertise and knowledge based on an interdisciplinary approach to complex problems.

The proposed program will be a highly interdisciplinary on-campus doctoral program housed in the College of Arts and Sciences that will combine studies from the traditional science disciplines of biology, chemistry, and physics to solve important cross-cutting problems at the interface of contemporary fields in biomolecular sciences. The program will focus on the (i) the study of complex nature of the molecules of biological systems as they relate to normal homeostatic and disease processes, (ii) the development of treatments for diseases as well as preventative measures such as vaccines, and (iii) the research and development of innovative devices and methodologies.

The proposed Ph.D. in Biomolecular Sciences will provide substantial economic and societal benefit to the region, the state, and the nation. Faculty and students in the program will address a wide range of research topics in areas that include cancer biology, immunology and immune disorders, neurobiology and neuropathology, pharmacology, skeletal biology, soft matter physics, molecular toxicology, forensic biology regenerative medicine, enzymology, cell membrane biophysics, plant growth regulation, microbial catalysis of biomass, bioinformatics for systems biology, antibiotic development, chemotherapy development, computer aided drug design, natural product drug discovery, nanomaterials, nanotoxicology, nanomedicine, and biofuels development.

Benefits of this research include: (i) Our research will aid in the understanding of a number of diseases and in the development of treatments and preventative measures for those diseases; examples of those diseases include breast cancer, leukemias and lymphomas, osteoarthritis, Rett Syndrome, Alzheimer’s disease, Parkinson’s disease, asthma, retinal detachment, cholera, West Nile Virus, and drug resistant bacterial infections (i.e., MRSA). (ii) Our research will support the development of Idaho’s biotechnology industry. For example, present projects involve development of potentially-patentable materials as such artificial cartilage, anti-fouling compounds, biocompatible containment vessels, biofuels, targeted drug delivery methods, new chemotherapeutic drugs, nanomedicine based approaches for treatment of cancer, biosensors for detection of pathogens, and instrument development to support biotechnology and medical diagnostics. (iii) The program will provide educational opportunities not currently available in the area, and thereby strengthen our workforce and make the area more attractive to businesses that may consider locating here.

“This program will benefit Boise in many ways, but here are the most obvious to this mayor. Its students will be Boiseans while pursuing their degrees, contributing both economically and culturally to the most livable city in the country.’ Many graduates will remain in the area, adding to our skilled workforce, advancing our existing biomedical enterprises and starting new ones. It is fact that higher-education research has a positive economic multiplier effect in its host city and far beyond.”—David Bieter, Mayor of Boise (Appendix B).

“Biomolecular studies have the potential to benefit far more than just one industry sector. Time after time, businesses seeking to expand in or relocate in Idaho look at the work force available in the state and the quality of life enjoyed there. Greater educational opportunities serve both these areas. Additionally, a Ph.D. program does not simply offer an outlet for students seeking educational advancement. A science-based doctorate degree option represents a real and tangible venue for
solving problems that interface dozens of fields.”—Celia Gould, Director, Idaho Department of Agriculture (Appendix B).

A recent report by the National Research Council “Advancing the Nation’s Health Needs” (2005) identified the importance of interdisciplinary programs, stating that “… the most significant research occurs at the interfaces between traditional research areas. This is even more likely to be true in the future because the solution to complex biological and health care problems will require experts and expertise in many different disciplines – and increasingly expertise in more than one field. Consequently, it is important to encourage such research. If this research is to be successful, individuals must be broadly trained so that they can understand and contribute to research that overlaps in different fields.”

The proposed Ph.D. in Biomolecular Sciences is a key deliverable of Idaho’s INBRE grant from NIH, which has been a highly successful cooperative effort among the universities. Since 2001, Idaho’s BRIN/INBRE funding has totaled more than $44 million, and has provided funds to facilitate development of biomedical research in Idaho. It has also funded graduate assistantships at Idaho State to support programs such as the new Ph.D. in Microbiology and the creation of two new Ph.D. programs at the University of Idaho. From the very beginning of the BRIN/INBRE program, the creation of Boise State’s Ph.D. in Biomolecular Sciences has been part of the plans. To quote from the INBRE proposal that was submitted in 2008 and subsequently funded (emphasis added; Appendix C):

“2.5 Facilitate Graduate Education
INBRE will enhance the number and quality of graduate students in Idaho. At the UI, two new interdisciplinary doctoral programs were developed with INBRE-1 funding and are now supported by the UI Research Office…INBRE support for graduate students in the Bioinformatics and Computational Biology program will continue. At ISU, INBRE graduate assistantships and national travel awards will be assigned competitively. At BSU, the first PhD program in Biomolecular Sciences is being developed. BSU has approved five new faculty lines and an interdisciplinary curriculum. The first cohort of PhD students is expected fall 2010 and INBRE funds at BSU will support four of these graduate assistantships with additional assistantships provided by the BSU Research Office.”

In their draft Year 2 external evaluation for the NIH of the INBRE grant, the reviewers recognized the importance to Boise State University and to the Boise area of the Ph.D. in Biomolecular Sciences in maintaining the momentum created by the BRIN/INBRE grants (See Appendix C).

“The Committee was particularly impressed by the developing interdisciplinary biomolecular research program at Boise State University. If approved by the appropriate authorities, the Interdisciplinary Biomolecular Sciences PhD Program would be unique in the State, including researchers and students from biology, chemistry, engineering and other disciplines.”

The proposed Ph.D. in Biomolecular Sciences will strengthen the ability of Boise State University’s faculty members to collaborate with faculty members in similar programs at the University of Idaho and Idaho State University. The value of these collaborations among researchers far outweighs any potential negative impact of similarity of programs. That is the conclusion of the recent Year 2 evaluation of the INBRE grant for the NIH by an external evaluation team. In their specific recommendations, the draft evaluation report (attached; Appendix C) states (emphasis added):

“the Biomolecular Sciences PhD Program…would be a unique interdisciplinary program, and would clearly complement and enhance the existing PhD programs at UI and ISU. The potential for inter-institutional collaborations between these programs is outstanding.”

A letter of support (attached; Appendix C) for the Ph.D. in Biomolecular Sciences from Dr. Carolyn Bohach, University of Idaho Faculty member and Director of Idaho INBRE, notes that (emphasis added):

“INBRE and the proposed Biomolecular Sciences Doctoral Program are both multidisciplinary, collaborative, and focus on the continued growth of research and research-training programs.”

“Your proposal for the establishment of a Biomolecular Sciences Doctoral Program builds on the early efforts of INBRE and will, I believe, complement existing graduate programs and serve Idaho well by creating a valuable training and research resource for the state.”
The proposed Ph.D. in Biomolecular Sciences will provide opportunities for sharing both the curriculum and faculty expertise among institutions. There will be increased reciprocal opportunities for faculty members to serve on graduate committees at other institutions. Graduate students enrolled in programs at the University of Idaho and Idaho State, and who spend significant time in the Treasure Valley, will be able to enroll in doctoral level coursework at Boise State University. Doctoral-level courses in the biomolecular sciences at Boise State will be made available via distance delivery methods to students at other institutions.

The proposed Ph.D. in Biomolecular Sciences will engage faculty from the Departments of Biological Sciences, Chemistry and Biochemistry, and Physics, who have together won more than 26.6 million dollars in external research funding and shared research instrumentation funding over the past 5 years. This represents more than an 8-fold increase compared to the previous 5 years. Currently, there are 14.7 million dollars in pending grants from this group of research-active faculty members. This cadre of twenty-nine faculty researchers engaged in diverse areas of collaborative biomolecular research is one of the largest active research groups at Boise State University. The size, diversity of research, and synergy between the areas of research will help ensure the success and sustainability of the proposed interdisciplinary doctoral program. In addition, the Biomolecular Sciences Ph.D. program is expected to have important synergistic activities with the proposed Materials Science doctoral program as at least eight of the core Biomolecular Sciences faculty members have research activities that dovetail with Materials Science faculty. In addition, the Biomolecular Sciences Ph.D. program is well aligned with the continuing areas of emphasis defined for Boise State University by the State Board of Education Institutional Role and Mission statement.

2. Quality – this section must clearly describe how this institution will ensure a high quality program. It is significant that the accrediting agencies and learned societies which would be concerned with the particular program herein proposed be named. Provide the basic criteria for accreditation and how your program has been developed in accordance with these criteria. Attach a copy of the current accreditation standards published by the accrediting agency. Further, if this new program is a doctoral, professional, or research, it must have been reviewed by an external peer-review panel. A copy of their report/recommendations must be attached.

The following measures will ensure the high quality of the proposed program:

Regional Institutional Accreditation. Boise State University is regionally accredited by the Northwest Commission on Colleges and Universities (NWCCU). Regional accreditation of the university has been continuous since initial accreditation was conferred in 1941. Boise State University is currently accredited at all degree levels (A, B, M, D).

Program Review. Internal program evaluations will take place every five years as part of the normal program review process conducted by the Office of the Provost at Boise State University. This process requires a detailed self study (including outcome assessments) and comprehensive review, and a site visit by external evaluators.

Graduate College. The program will adhere to all policies and procedures of the Graduate College, which is a member of the Council of Graduate Schools (Washington, D.C.), the leading authority on graduate education in the United States. The Graduate College has broad institutional oversight of all graduate degree and certificate programs.

Disciplinary Standards: Although there is no discipline-specific accrediting body for graduate studies in biomolecular sciences, the Standards of the International Union of Biochemistry and Molecular Biology for the Ph.D. Degree in the Molecular Biosciences will be adopted for the Biomolecular Sciences Doctoral Program at Boise State. These standards include:

1. The candidate should demonstrate a general knowledge of physics, chemistry, biology and cell biology, biochemistry and molecular biology, the particular Molecular Bioscience, and a detailed knowledge of his or her area of research.
2. The candidate should be familiar with the research literature of the particular Bioscience and should have the ability to keep abreast of major developments and to acquire a working background in any area.
3. The candidate should demonstrate skill in the recognition of meaningful problems and questions for research in the particular Bioscience.
4. The candidate should possess technical skill in laboratory manipulations.
5. The candidate should demonstrate that oral, written, and visual communication skills have been acquired.
6. The candidate should demonstrate skill in designing experimental protocols and in conducting productive self-directed research.

A Director of the Biomolecular Sciences Program will be appointed by the Dean of the College of Arts and Sciences, based upon the recommendation of department chairs of the three participating departments (Biological Sciences, Chemistry and Biochemistry, and Physics) to the Dean. The Director and the three chairs (Biological Sciences, Chemistry and Biochemistry, and Physics) will convene as “partner administrators” to discuss finances, policy, and administration of the program, and will meet with the Dean of the College of Arts and Sciences as needed.

A Faculty Steering Committee will be established with representation by a faculty member(s) from each of the participating disciplines: Biological Sciences (2), Physics (1), and Chemistry and Biochemistry (1), plus the program director. This committee will serve 3 year terms using a model of off-set terms to ensure program continuity. This committee will focus on curriculum changes, policy, student recruitment, admission into the program, advising, student progress reports, and related responsibilities.

An External Advisory Board will be established to provide experience and expertise that will ensure the quality of the program during the establishment phase and through annual review and evaluation. Membership will consist of representation from industry, similar programs at other universities, and biomedical research entities. The External Advisory Board will meet semi-annually with the Director and the Faculty Steering Committee.

Qualifying Examination. All students in the proposed doctoral program will be required to pass a preliminary/qualifying examination to assess the depth and breadth of the student’s knowledge in the biomolecular sciences. Questions will be developed by the program faculty, with the focus on material presented in the core sequence and the required undergraduate background courses in cell biology, biochemistry, calculus, and general physics. The outcome of the preliminary examination will be determined by the Faculty Steering Committee. Failure of the preliminary examination will normally result in administrative withdrawal of the student from the program. In rare cases, and in accordance with Graduate College policy, a student may be allowed a second and final attempt to pass the examination before administrative withdrawal.

a. Curriculum – describe the listing of new course(s), current course(s), credit hours per semester, and total credits to be included in the proposed program.

The Biomolecular Sciences Doctoral Program is meant to provide students with advanced cross-training in the interdisciplinary fields of biochemistry, biophysics, cell biology, and molecular biology to foster an integrated and quantitative approach to biomolecular studies. The program is designed to provide every student with a three course core sequence by faculty in the departments of Biological Sciences (BMOL 601), Chemistry and Biochemistry (BMOL 602), and Physics (BMOL 603), to provide them with a foundation in biomolecular sciences while exposing them to the perspectives of each of these fields. Every student will take 12 credits of the core sequence (BMOL 601-603) during their first 1.5 years, as well as 10 additional credits in graduate seminars, scientific literature, writing and oral communications courses, and a scientific ethics course (BMOL 598, 605, 606, 607 and GCOLL 505, respectively). The program offers two tracks of study: Molecular Cell Biology, and Biochemistry/Biophysics, so students will also take 4-6 credits of track-specific coursework, as well as 12-14 credits of elective coursework approved by their supervisory committee.
Doctor of Philosophy in Biomolecular Sciences

<table>
<thead>
<tr>
<th>Course Number and Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Sequence</td>
<td></td>
</tr>
<tr>
<td>BMOL 601 Biomolecules I (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 602 Biomolecules II (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 603 Biophysical Instrumentation (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>Additional Required Courses</td>
<td>10</td>
</tr>
<tr>
<td>*BMOL 598 Graduate Seminar (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>**BMOL 605 Current Scientific Literature (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 606 Proposal Writing (2 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 607 Graduate Research Presentation (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>GCOLL 505 Responsible Conduct in Research (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>Track Specific Courses</td>
<td>4-6</td>
</tr>
<tr>
<td>Molecular Cell Biology Track:</td>
<td></td>
</tr>
<tr>
<td>BIOL 611 Advanced Cell Biology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>PHYS 612 Cell Biophysics and Imaging (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>Biochemistry/Biophysics Track:</td>
<td></td>
</tr>
<tr>
<td>PHYS 611 Molecular Biophysics (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>Electives (with committee approval)</td>
<td>12-14</td>
</tr>
<tr>
<td>Comprehensive Examinations and Dissertation</td>
<td>26</td>
</tr>
<tr>
<td>BMOL 600 Assessment [Preliminary Examination] (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 600 Assessment [Comprehensive Examination] (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>Culminating Activity</td>
<td></td>
</tr>
<tr>
<td>BMOL 693 Dissertation (24 cr.)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>66</td>
</tr>
</tbody>
</table>

*1 credit course, to be taken each and every time it is offered by current students in the Biomolecular Sciences Ph.D. program. Only 3 credits apply towards degree requirements.

** 1 credit course, to be taken a minimum of three times. Only 3 credits may apply towards degree requirements.

***Up to two elective courses may be taken from approved course listing.

Molecular Cell Biology Track

<table>
<thead>
<tr>
<th>Core Sequence</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMOL 601 Biomolecules I (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 602 Biomolecules II (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 603 Biophysical Instrumentation (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>Track Specific Courses</td>
<td></td>
</tr>
<tr>
<td>BIOL 611 Advanced Cell Biology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>PHYS 612 Cell Biophysics and Imaging (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>Additional Required Courses</td>
<td></td>
</tr>
<tr>
<td>*BMOL 598 Graduate Seminar (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>**BMOL 605 Current Scientific Literature (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 606 Proposal Writing (2 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 607 Graduate Research Presentation (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>GCOLL 505 Responsible Conduct in Research (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>Electives (with committee approval)</td>
<td></td>
</tr>
<tr>
<td>Comprehensive Examinations and Dissertation</td>
<td>26</td>
</tr>
<tr>
<td>BMOL 600 Assessment [Preliminary Examination] (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 600 Assessment [Comprehensive Examination] (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>Culminating Activity</td>
<td></td>
</tr>
<tr>
<td>BMOL 693 Dissertation (24 cr.)</td>
<td></td>
</tr>
</tbody>
</table>

***At least 12 credits of coursework from the following list of electives:

- BIOCHEM 512 Intermediary Metabolism (3 cr.)
- BIOCHEM 513 Advanced Enzymology (3 cr.)
- BIOL 501 Biometry (4 cr.)
- BIOL 503 Advanced Biometry (4 cr.)
- BIOL 509 Molecular Ecology (3 cr.)
- BIOL 510 Pathogenic Bacteriology (4 cr.)

TOTAL 66
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 520</td>
<td>Immunology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 521</td>
<td>Immunology Laboratory (2 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 531</td>
<td>Pharmacology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 539</td>
<td>Vaccinology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 540</td>
<td>General and Molecular Toxicology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 541</td>
<td>Molecular Biology of Cancer (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 542</td>
<td>Molecular Neurobiology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 543</td>
<td>Advanced Developmental Biology (2 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 546</td>
<td>Bioinformatics (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 547</td>
<td>Forensic Biology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 548</td>
<td>Perl for Bioinformatics (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 549</td>
<td>Genomics (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 551</td>
<td>Developmental Biology (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 565</td>
<td>Advanced Topics in Molecular Biology Techniques (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 566</td>
<td>Adv. Topics in Molecular, Cellular and Developmental Biology (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 570</td>
<td>Genetic Engineering and Biotechnology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 613</td>
<td>Molecular Genetics (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>BIOL 623</td>
<td>Advanced Immunology (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>BOT 523</td>
<td>Molecular and Cellular Biology of Plants (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>MATH 562</td>
<td>Probability and Statistics (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>PHYS 611</td>
<td>Molecular Biophysics (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>PHYS 620</td>
<td>Nanobiotechnology (3 cr.)</td>
<td></td>
</tr>
<tr>
<td>ZOOL 501</td>
<td>Human Physiology (4 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 600</td>
<td>Assessment [Preliminary Exam] (1 cr.)</td>
<td></td>
</tr>
<tr>
<td>BMOL 600</td>
<td>Assessment [Comprehensive Examination] (1 cr.)</td>
<td>2</td>
</tr>
<tr>
<td>BMOL 693</td>
<td>Dissertation (24 cr.)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>TOTAL CREDITS</td>
<td>66</td>
</tr>
</tbody>
</table>

Biochemistry/Biophysics Track

Core Sequence
- BMOL 601 Biomolecules I (4 cr.)
- BMOL 602 Biomolecules II (4 cr.)
- BMOL 603 Biophysical Instrumentation (4 cr.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL CREDITS</td>
<td>12</td>
</tr>
</tbody>
</table>

Track Specific Courses
- PHYS 611 Molecular Biophysics (4 cr.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL CREDITS</td>
<td>4</td>
</tr>
</tbody>
</table>

Additional Required Courses
- *BMOL 598 Graduate Seminar (3 cr.)*
- **BMOL 605 Current Scientific Literature (3 cr.)*
- BMOL 606 Proposal Writing (2 cr.)
- BMOL 607 Graduate Research Presentation (1 cr.)
- GCOLL 505 Responsible Conduct in Research (1 cr.)

At least 14 credits of coursework from the following list of electives:*
- BIOCHEM 512 Intermediary Metabolism (3 cr.)
- BIOCHEM 513 Advanced Enzymology (3 cr.)
- CHEM 508 Synthetic Organic Chemistry (3 cr.)
- CHEM 509 Introduction to Polymer Chemistry (3 cr.)
- CHEM 510 Organic Polymer Synthesis (3 cr.)
- CHEM 511 Advanced Analytical Chemistry (3 cr.)
- CHEM 521 Quantum Chemistry (3 cr.)
- CHEM 522 Spectroscopy (3 cr.)
- CHEM 523 Chemical Kinetics (3 cr.)
- CHEM 540 Spectrometric Identification (3 cr.)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOTAL CREDITS</td>
<td>10</td>
</tr>
</tbody>
</table>
Course Descriptions

BIOCHEM 512 INTERMEDIARY METABOLISM (3-0-3)(S) (Alternate years). An investigation into several anabolic, catabolic, and signaling processes in the cell. Special attention will be given to molecular mechanisms and regulation. Students will make extensive use of primary literature. PREREQ: CHEM 433 or PERM/INST.

BIOCHEM 513 ADVANCED ENZYMOLOGY (3-0-3)(S)(Alternate years). A deeper look into the catalytic and kinetic mechanisms of enzymes. Modern methods for studying enzymes will be included as well as learning strategies for studying steady state and transient enzyme kinetics. Students will make extensive use of primary literature. PREREQ: CHEM 322 and CHEM 433 or PERM/INST.

BIOL 501 BIOMETRY (4-0-4)(F). An application of statistical methods to problems in the biological sciences. Basic concepts of hypothesis testing; estimation and confidence intervals; t-tests and chi-square tests. Linear and nonlinear regression theory and analysis of variance. Techniques in multivariate and nonparametric statistics. PREREQ: MATH 147 or equivalent, or PERM/INST.

BIOL 510 PATHOGENIC BACTERIOLOGY (2-6-4)(S)(Odd years). Medically important bacteria, rickettsia, and chlamydia are surveyed with emphasis on their pathogenicity, host-parasite relationships, and the clinical and diagnostic aspects of the diseases they produce in humans and animals. PREREQ: BIOL 301 and BIOL 303.

BIOL 520 IMMUNOLOGY (3-0-3)(F). Principles of immunology, host defense mechanisms, the immune response, immune disorders, serology, and related topics. PREREQ: BIOL 301 and equivalent.

BIOL 521 IMMUNOLOGY LABORATORY (0-6-2)(F/S). Modern immunological laboratory techniques including flow cytometry, immune system physiology, antibody-based assays including ELISA, vaccine design, and immuno-bioinformatics. COREQ: BIOL 520.

BIOL 531 PHARMACOLOGY (3-0-3)(F). Basic pharmacological principles including mechanisms of drug action in relation both to drug- receptor interactions and to the operation of physiological and biochemical systems. Pharmacokinetics, metabolism, receptor theory and an examination of major classes of therapeutic agents used in humans. PREREQ: BIOL 227-228 or BIOL 191-192, and BIOL 301.

BIOL 539 VACCINOLOGY (3-0-3)(S). Discussion of the history, safety, epidemiology, molecular biology and immunology of vaccines. Development of the next generation of vaccines to combat infectious disease of global importance, such as HIV, malaria and tuberculosis, also will be discussed. PREREQ: BIOL 301 or PERM/INST.

BIOL 540 GENERAL AND MOLECULAR TOXICOLOGY (3-0-3)(F/S). General and molecular principles of mammalian toxicology including toxicant disposition, mechanisms of toxicity, target organ toxicity, and major classes of toxic agents. PREREQ: BIOL 301 OR PERM/INST.

BIOL 541 MOLECULAR BIOLOGY OF CANCER (3-0-3)(S). A treatment of the basic biology of cancer
and the process of tumor progression. Topics examined will include oncogenes, tumor suppressor genes, and the causes of cancer. PREREQ: BIOL 301, BIOL 343.

BIOL 542 MOLECULAR NEUROBIOLOGY (3-0-3)(F). Emphasis will be on the molecular aspects of neurobiology. Topics will include: cells of the nervous system, neurochemical transmission, nerve terminals, membrane structure and function, electrical signaling, neural development, process outgrowth and myelination and glia, and specific neural diseases including Alzheimer’s disease, Parkinson’s disease, and Lou Gehrig’s disease. PREREQ: BIOL 301.

BIOL 543 ADVANCED DEVELOPMENTAL BIOLOGY (1-6-2)(F)(Odd years). Application of molecular and cellular methods to current topics in developmental biology. Analysis of current literature in biology with emphasis on the coordinated regulation of gene expression, cellular differentiation and migration. Laboratory studies include model systems such as chick, zebrafish, sea urchin and mouse, utilizing cell/tissue culture, histology, immunohistochemistry, RT-PCR, protein purification, SDS-PAGE, western blot and others. PREREQ: BIOL 301.

BIOL 546 BIOINFORMATICS (2-3-3)(F). Practical training in bioinformatics methods: accessing sequence data bases, BLAST tools, analysis of nucleic acid and protein sequences, detection of motifs and domains of proteins, phylogenetic analysis, gene arrays, and gene mapping. PREREQ: BIOL 343 or PERM/INST.

BIOL 547 FORENSIC BIOLOGY (3-0-3)(F). Analysis and interpretation of biological evidence in forensic contexts. Topics include entomology, botany, fingerprints, toxicology, DNA, pathology, anthropology and odontology. PREREQ: BIOL 343 or PERM/INST.

BIOL 548 PERL FOR BIOINFORMATICS APPLICATIONS (3-0-3)(F/S). The PERL programming language is used to introduce skills and concepts to process and interpret data from high-throughput technologies in the biological sciences. Key bioinformatics concepts are reinforced through lectures, computer demonstrations, weekly readings, and programming exercises from biological sequence analysis and real-world problems in proteomics and genetics. PREREQ: BIOL 446 or PERM/INST.

BIOL 549 GENOMICS (3-0-3)(F/S). A fusion of biology, computer science, and mathematics to answer biological questions. Topics include analyzing eukaryotic, bacterial, and viral genes and genomes; locating genes in genomes and identifying their biological functions; predicting regulatory sites; assessing gene and genome evolution; and analyzing gene expression data. PREREQ: BIOL 343 and MATH 254, or PERM/INSTR.

BIOL 551 DEVELOPMENTAL BIOLOGY (3-3-4)(S)(Odd years). Germ cell development, comparative patterns of cleavage and gastrulation, neurulation and induction, and development of human organ systems with emphasis on molecular and cellular mechanisms. Laboratory studies of sea urchin, frog, chick, and pig development. PREREQ: BIOL 191-192 and BIOL 301 or PERM/INST.

BIOL 565 ADVANCED TOPICS IN MOLECULAR BIOLOGY TECHNIQUES (1-0-1)(F). Discussion of scientific literature with emphasis on modern molecular biology techniques. Students lead discussions and present articles from relevant primary literature. May be repeated once for credit. PREREQ: BIOL 343 and PERM/INST.

BIOL 566 ADVANCED TOPICS IN MOLECULAR, CELLULAR AND DEVELOPMENTAL BIOLOGY (1-0-1)(S). Discussion of current research. Students lead discussions and present articles, as well as monitor recent relevant primary literature. Previous enrollment in BIOL 465 or BIOL 565 recommended. May be repeated once for credit. PREREQ: BIOL 343 and PERM/INST.

BIOL 570 GENETIC ENGINEERING AND BIOTECHNOLOGY (3-0-3)(F/S). Applications of biotechnology, genetic engineering, and recombinant DNA technology in medical diagnosis and therapy, agriculture, microbial biology and environmental systems. The principles and application of recombinant DNA technology in industrial, agricultural, pharmaceutical, and biomedical fields are discussed. PREREQ: BIOL 343.

BIOL 611 ADVANCED CELL BIOLOGY (3-0-3) (F). Contemporary and frontier topics in the biology of microbial, plant, and animal cells covering signal transduction, protein trafficking, membrane structure and transport, cell to cell communication, cellular compartmentalization, and cell biotechnology applications. PREREQ: BIOL 301 or PERM/INST.
BIOL 613 MOLECULAR GENETICS (3-0-3) (S). An advanced study of genetics in microbial, animal and plant systems, focused on the biochemical and molecular aspects of genetic structure and function. Information obtained from recent genomic analysis and comparisons will be included as well as discussion of contemporary molecular biology techniques and applications and an introduction to genomics. PREREQ: BIOL 343 or equivalent.

BIOL 623 ADVANCED IMMUNOLOGY (1-0-1)(S). An advanced study of the cellular and molecular regulation of the immune response. The course will include formal lectures, student presentations, in-depth discussion of selected topics using the current literature. PREREQ: BIOL 520 or PERM/INST.

BMOL 598 GRADUATE SEMINAR (1-0-1)(S). Seminars by scientists on a wide range of subjects in the areas of biomolecular sciences. PREREQ: Admission to program or PERM/INST. The course is graded Pass/Fail.

BMOL 600 ASSESSMENT [PRELIMINARY EXAMINATION] (1-0-1)(SU). Written assessment of material presented in the core curriculum and undergraduate prerequisite coursework. Students enroll in this course during the summer semester following completion of their second academic year of study. A daylong exam is scheduled during which students complete a written exam consisting of questions provided by the graduate faculty from topics covered in prerequisite and core courses. Examinations will be evaluated by an assembled panel of Biomolecular Sciences program faculty. PREREQ: PERM/INST. The course is graded Pass/Fail.

BMOL 600 ASSESSMENT [COMPREHENSIVE EXAMINATION] (1-0-1)(F). Students enrolled in this course prepare a research proposal on a topic other than their dissertation work and submit it to an examining committee. An oral defense of the proposal is scheduled during the semester to assess familiarity with the grant topic as well as material covered in core curriculum and prerequisite courses. Successful completion of this course is required for the student to advance to candidacy. PREREQ: PERM/INST. The course is graded Pass/Fail.

BMOL 601 BIOMOLECULES I (4-0-4)(F). An in-depth study of the metabolism of both DNA and RNA at the molecular/mechanistic level. This course will cover the mechanisms of DNA replication, transcription, translation, transposition and repair, as well as those for RNA interference, catalysis, silencing and splicing. Molecular genetics and bioinformatics approaches for studying DNA/RNA and their interactions with proteins will be discussed. PREREQ: BIOL 301, CHEM 431, MATH 170, PHYS 112.

BMOL 602 BIOMOLECULES II (4-0-4)(S). An in-depth study of proteins focusing on amino acid chemistry, protein structure, protein folding, protein function, membrane biochemistry as well as small molecules, lipids and carbohydrates. This course will discuss modern methods of protein characterization and the use of bioinformatics in understanding the chemistry/function of proteins. Recent developments in proteomics and high-throughput approaches to identifying and assessing protein function will be presented. PREREQ: BMOL 601.

BMOL 603 BIOPHYSICAL INSTRUMENTATION AND TECHNIQUES (3-3-4) (F/S). Applications and principles of key physical methods and instruments used for the characterization of the structural, functional, and dynamical properties of biological molecules and their interactions. Methods include single-molecule detection and manipulation; mass spectroscopy; X-ray, electron, and neutron diffraction; spectroscopy (optical, IR, UV, Raman); magnetic resonance (NMR, EPR, MRI); plasmon resonance; birefringence; electrophoresis; and hydrodynamic techniques. PREREQ: BIOL 301, CHEM 431, MATH 170, PHYS 112.

BMOL 605 CURRENT SCIENTIFIC LITERATURE (1-0-1)(F). Written and oral presentation of current topics from the published literature in areas of Biomolecular Sciences aimed at integrating material from the various related disciplines. Course will be multidisciplinary involving in depth discussion and critical analysis of current literature by the students. PREREQ: Graduate student status.

BMOL 606 PROPOSAL WRITING (0-2-2)(F/S). Written and oral presentation of a research proposal in an area of biomolecular sciences related to the student’s proposed dissertation research project. PREREQ: BMOL 601.

BOT 523 MOLECULAR AND CELLULAR BIOLOGY OF PLANTS (3-0-3)(F/S). Molecular and cellular aspects of growth and development of plants and their responses to biological and environmental stimuli. Plant genome organization, mechanisms of gene regulation, techniques to generate transgenic plants, and practical applications of plant biotechnology. PREREQ: BIOL 301.

CHEM 508 SYNTHETIC ORGANIC CHEMISTRY (3-0-3)(F) (Alternate years). The scope and limitations of the more important synthetic reactions are discussed within the framework of multistep organic synthesis. PREREQ: CHEM 309 or PERM/INST.

CHEM 509 INTRODUCTION TO POLYMER CHEMISTRY (3-0-3) (F)(Alternate years). An introduction to the concepts of polymer synthesis, characterization, structure, properties, and basic fabrication processes. Emphasis is on practical polymer preparation, on the fundamental kinetics and mechanisms of polymerization, and on structure-property relationship. PREREQ: CHEM 309 or PERM/INST.

CHEM 510 ORGANIC POLYMER SYNTHESIS (3-0-3)(S) (Alternate years). A study of the synthesis and reactions of polymers. Emphasis is on practical polymer preparation and on the fundamental kinetics and mechanisms of polymerization reactions. Topics include relationship of synthesis and structure, characterization of polymer structure, step-growth polymerization, chain-growth polymerization via radical, ionic and coordination intermediates, copolymerization. PREREQ: CHEM 309 or PERM/INST.

CHEM 511 ADVANCED ANALYTICAL CHEMISTRY (3-0-3)(F). Stoichiometry involved in separations and instrumental methods of analysis. The course will be flexible in nature to adapt to the varied background of the students. PREREQ: CHEM 322 or PERM/INST.

CHEM 521 QUANTUM CHEMISTRY (3-0-3)(F)(Alternate years). Formal introduction to quantum mechanics, Dirac notation, angular momentum and operator algebra. Emphasis will be placed on electronic structure theory, reaction mechanisms and the use of modern quantum chemistry theoretical packages. PREREQ: CHEM 322, or PHYS 309 and PHYS 432, or PERM/INST.

CHEM 522 SPECTROSCOPY (3-0-3)(F)(Alternate years). Concepts and practical usage of modern chemical spectroscopic techniques, including electronic absorption, infrared/Raman, X-Ray/ EXAFS, magnetic resonance and magnetic circular dichroism. Emphasis will be placed on the application of these techniques to the structure/function characterization of chemical and biochemical systems. PREREQ: CHEM 521 or PERM/INST.

CHEM 523 CHEMICAL KINETICS (3-0-3)(F)(Alternate years). A comprehensive study of the role of quantum chemistry and thermodynamics in chemical reactions. Emphasis will be placed on determining reaction coordinates and transition states. Extensive use will be made of modern computational chemical computer programs for calculating potential energy surfaces and transition states. PREREQ: CHEM 322, or PHYS 309 and PHYS 432, or PERM/INST.

CHEM 551 BIOINORGANIC CHEMISTRY (3-0-3)(S)(Alternate years). Exploration of the vital roles that metals play in biochemical systems. Emphasis is on transition metals in biology. Course will focus on structural, regulatory, catalytic, transport and redox functions of bioinorganic systems. PREREQ: CHEM 322 or PERM/INST.

CHEM 560 INTRODUCTION TO NMR SPECTROSCOPY (1-3-2) (Offered intermittently). This course will instruct students on the theory and practice of one- and two-dimensional NMR spectroscopy. Emphasis will be placed on using the NMR spectrometer to solve a variety of chemical and biological problems. PREREQ: CHEM 322, or PHYS 309 and PHYS 432, or PERM/INST.

CHEM 561 INTRODUCTION TO MOLECULAR MODELING AND COMPUTATIONAL CHEMISTRY (1-3-2) (Offered intermittently). Overview of modern computational chemistry. Use of computational chemistry tools and their application to problems of chemical and biological interest. PREREQ: CHEM 322, or PHYS 309 and PHYS 432, or PERM/INST.

COMPSCI 510 DATABASES (4-0-4)(S). A study of the theoretical foundations of database management.
systems. Design and implementation of alternatives for various database models, including, but not limited to, hierarchical, network, and relational models. Comparison of the reliability, security, and integrity of various database systems. Implementation of a simple systems. PREREQ: COMPSCI 242 or PERM/INST.

COMPSCI 521 DESIGN AND ANALYSIS OF ALGORITHMS (3-0-3)(F). Design techniques such as amortized analysis, dynamic programming, and greedy algorithms. Computational geometry, graph algorithms, primality and other number-theoretic algorithms, specialized data structure techniques such as augmenting data structures, combinatorial graph reduction and functional repetition. NP completeness and approximation algorithms. PREREQ: COMPSCI 242.

COMPSCI 530 PARALLEL COMPUTING (4-0-4)(F). Motivation for parallel computation and survey of different models. Fundamental techniques used in parallel algorithms. Implementation on parallel machines and simulations on clusters of workstations. Distributed computing versus parallel computing. Examples of distributed programming environments. PREREQ: COMPSCI 242 or PERM/INST.

COMPSCI 557 ARTIFICIAL INTELLIGENCE (3-0-3)(F/S). Course will include a survey of some of the following topics, plus a project: Principles of knowledge-based search techniques; automatic deduction; knowledge representation using predicate logic, semantic networks, connectionist networks, frames, rules; applications in problem solving, expert systems, game playing, vision, natural language understanding, learning, robotics; LISP programming. PREREQ: COMPSCI 242 and COMPSCI 354 or PERM/INST.

GCOLL 505 RESPONSIBLE CONDUCT IN RESEARCH (1-0-1)(F,S). Basic concepts, principals and practices governing research compliance and Responsible Conduct for Research (RCR) in each of four disciplinary areas (one area chosen by each student): biomedical sciences, social and behavioral sciences, physical sciences and engineering, humanities. Each area includes an overview of research misconduct, data acquisition and management, responsible authorship, peer review, mentoring, conflicts of interest, collaborative research, human subjects and animal research. On-line materials produced by the Collaborative Institutional Training Initiative (CITI). Lectures will cover the on-line materials and related case studies, and other areas of research compliance including patents, intellectual properties, non-disclosure agreements and sponsored projects. PREREQ: Graduate standing.

MATH 562 PROBABILITY AND STATISTICS II (4-0-4)(F)(Odd-numbered years). Provides a solid foundation in statistical theory and its use in solving practical problems in the real world. Topics include moment-generating functions, multivariate probability distributions, hierarchical models and mixture distributions, functions of random variables, central limit theorems, estimation, hypothesis testing, multiple linear regression, the analysis of variance, analysis of categorical data, non-parametric statistics. PREREQ: MATH 301, MATH 361 and MATH 275.

MATH 572 COMPUTATIONAL STATISTICS (3-0-3)(F)(Even numbered years). Introduction to the trend in modern statistics of basic methodology supported by state-of-art computational and graphical facilities, with attention to statistical theories and complex real world problems. Includes: data visualization, data partitioning and resampling, data fitting, random number generation, stochastic simulation, Markov chain Monte Carlo, the EM algorithm, simulated annealing, model building and evaluation. A statistical computing environment will be used for students to gain hands-on experience of practical programming techniques. PREREQ: MATH 361.

PHYS 536 SOFT MATTER (3-0-3)(F/S). Examples of soft matter include glues, paints, soaps, rubber, foams, gelatin, milk, and most materials of biological origin. Introduction to the principles underlying the physical properties and behaviors of soft matter, including colloids, polymers, gels, and liquid crystals. Expected background: one semester of upper-level thermodynamics from any department. PREREQ: PERM/INST.
PHYS 537 RADIATION BIOPHYSICS (3-0-3)(F/S). Physical properties and biological effects of different kinds of radiation: action of radiation on various cellular constituents: target theory, genetic effects, repair of radiation damage, physics of radiology and radiotherapy, isotopic tracers. PREREQ: PHYS 307 or PERM/INST.

PHYS 611 MOLECULAR BIOPHYSICS (3-3-4)(F/S). Introduction to the basic concepts and applications of molecular biophysics. Topics include energy and molecular forces in biological structures, conformations of biomolecules, polyelectrolytes in biological systems, transport processes, molecular motors, reaction rates, ions in solution, biological polymers and membranes. PREREQ: BIOL 301, CHEM 431, MATH 170, PHYS 112.

PHYS 612 CELL BIOPHYSICS AND IMAGING (2-2-3)(F/S). Biophysics and imaging of cellular structure and function. Topics include cell rigidity, motility, osmotic pressure, endocytosis, trafficking and diffusion in cytoplasm, ion channels and electrolyte balance, neural electrical signaling. Key techniques of imaging cells, including confocal, fluorescence, multi-photon, and phase-contrast microscopies, and special treatments and methods for live-cell imaging. PREREQ: BIOL 301, CHEM 431, MATH 170, PHYS 112.

PHYS 620 NANOBIO TECHNOLOGY (3-0-3)(F/S). An introduction to the biological and biomedical uses of nanotechnology, including the nature and applications of nanostructures to cell biology, imaging, biosensors, medical therapy (including anti-cancer therapies and drug delivery), and biotechnology. PREREQ: BMOL 603.

PHYS 624 MEMBRANE BIOPHYSICS (3-0-3)(F/S) Membranes are of fundamental importance for biological systems due to their roles in cellular compartmentalization, signal transduction, metabolism, and energy synthesis. Topics include structures and functions of membrane bilayers and of membrane proteins, physics of membrane fusion, and mechanisms of cell signaling and energy transduction. PREREQ: BMOL 602, PHYS 611.

ZOOL 501 HUMAN PHYSIOLOGY (3-3-4)(F/S). Functional aspects of human tissues and organ systems with emphasis on regulatory and homeostatic mechanisms. PREREQ: BIOL 301 or PERM/INST.

b. Faculty

Twenty-nine faculty members (tenured/tenure-track and research) from the Departments of Biological Sciences, Biochemistry and Chemistry, and Physics will participate in the program. All of the existing faculty are active researchers, have published extensively in national and international journals, and have received funding to support their research through grant and contracts. The four proposed new faculty hires will have similar expectations. The tenured/tenure-track and research faculty participants are as follows:

Eric Brown, Ph.D., Oregon State University, 2002, Assistant Professor – Dept. Chemistry & Biochemistry. Organic and inorganic chemistry, synthesis of organometallic complexes to model enzyme active sites.

Henry Charlier, Ph.D., Medical College of Wisconsin, 1996, Associate Professor - Dept. Chemistry & Biochemistry. Biochemistry, enzymology of carbonyl reductase and alcohol dehydrogenase.

Ken Cornell, Ph.D., Oregon Health Sciences University, 1997, Associate Professor - Dept. Chemistry & Biochemistry. Biochemistry, vaccine development, infectious disease, antibiotic development.

Kevin Feris, Ph.D., Ph.D., University of Montana, 2003, Associate Professor – Dept. Biological Sciences. General microbiology, applied and environmental microbiology, microbial physiology.

Daniel Fologea, Ph.D., University of Bucharest, 2002, Assistant Professor – Dept. of Physics. Experimental biophysics, cell membrane biophysics, nanobiotechnology.

Charles Hanna, Ph.D., Stanford University, 1990, Professor – Dept. of Physics. Modeling of nanoscale physical and biophysical systems, condensed matter physics, thermodynamics and statistical mechanics, physical interactions in biomolecular systems.

Minoti Hiremath, Ph.D., New York University School of Medicine, 2007, Research Assistant Professor – Dept. of Biological Sciences. Cell biology, developmental biology, molecular biology of cancer.

Cheryl Jorcyk, Ph.D., The Johns Hopkins University, 1990, Associate Professor – Dept. Biological Sciences. The role of oncostatin M (OSM) in breast cancer metastasis, cell signaling, and interaction with the extracellular matrix.

Jeunghoon Lee, Ph.D., University of Connecticut, 2005, Assistant Professor - Dept. Chemistry & Biochemistry, Organic chemistry, nanomaterials, polymer chemistry, synthesis and applications of nanoparticles.

Owen McDougal, Ph.D., University of Utah, 1998, Associate Professor - Dept. Chemistry & Biochemistry, Organic chemistry, NMR structural analysis of peptides, chemical modeling.

Rajesh Nagarajan, Ph.D., Wesleyan University, 2004, Assistant Professor - Dept. Chemistry & Biochemistry, Biochemistry, organic chemistry, antibiotic development.

Alex Punnoose, Ph.D., Aligarh University, India, 1994. Professor- Dept. of Physics. Nanomaterials, nanobiotechnology, cancer nanotechnology, nanomedicine, nanotoxicology, electron spin resonance, catalysis.

Troy Rohn, Ph.D., University of Washington, 1994, Professor – Dept. Biological Sciences. Neurobiology and neurodegenerative diseases, including Parkinson's and Alzheimer's disease, and pharmacology.

Juliette Tinker, Ph.D., University of Iowa, 2000, Assistant Professor – Dept. Biological Sciences. Medical microbiology, vaccine development, bacterial pathogenesis.

Don Warner, Ph.D., University of Michigan, 2002, Associate Professor - Dept. Chemistry & Biochemistry, Organic chemistry, medicinal chemistry, synthesis of anticancer agents, computational chemistry.

Dong Xu, Ph.D., San Diego State University, 2007. Assistant Professor - Dept. Chemistry & Biochemistry, Computational chemistry.

The addition of the following four new full-time Assistant/Associate Professors specializing in cell biology, physiology, molecular genetics, and biophysics is planned. These individuals will be involved in teaching the core curriculum sequence

Cell Biologist, Ph.D. University committed hire for Fall 2012, Associate Professor, Dept. of Biological Sciences.

Physiologist, Ph.D. University committed hire for Fall 2012, Associate Professor, Dept. of Biological Sciences.

Molecular Geneticist, Ph.D. University committed hire for Fall 2012, Associate Professor, Dept. of Biological Sciences.

Biophysicist, Ph.D. University committed hire for Fall 2012, Associate Professor - Dept. of Physics. Biophysical Instrumentation, Molecular Biophysics, Cell Biophysics, Membrane Biophysics.

The FTE assignments of the official tenure track faculty for year 3 of the program (FY15) are shown in the following table:

<table>
<thead>
<tr>
<th>Regular Faculty</th>
<th>Expertise</th>
<th>Program FTE- year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eric Brown</td>
<td>Inorganic/Organic Chemistry</td>
<td>0.09</td>
</tr>
<tr>
<td>Henry Charlier</td>
<td>Biochemistry, Enzymology</td>
<td>0.09</td>
</tr>
<tr>
<td>Ken Cornell</td>
<td>Biochemistry, Vaccine Development</td>
<td>0.32</td>
</tr>
<tr>
<td>Kevin Feris</td>
<td>Applied Microbiology</td>
<td>0.09</td>
</tr>
<tr>
<td>Daniel Fologea</td>
<td>Biophysics</td>
<td>0.33</td>
</tr>
<tr>
<td>Jennifer Forney</td>
<td>Pharmacology</td>
<td>0.09</td>
</tr>
<tr>
<td>Morgan Giddings</td>
<td>Bioinformatics</td>
<td>0.05</td>
</tr>
<tr>
<td>Jeffrey Habig</td>
<td>Bioinformatics</td>
<td>0.00*</td>
</tr>
<tr>
<td>Greg Hampikian</td>
<td>Cell Biology, Forensic Biology</td>
<td>0.17</td>
</tr>
<tr>
<td>Charles Hanna</td>
<td>Soft Matter Physics, Modeling</td>
<td>0.00*</td>
</tr>
<tr>
<td>Minoti Hiremath</td>
<td>Molecular Biology of Cancer</td>
<td>0.00*</td>
</tr>
<tr>
<td>Cheryl Jorcyk</td>
<td>Cancer Biology</td>
<td>0.32</td>
</tr>
<tr>
<td>Jeungmoon Lee</td>
<td>Organic Chemistry, Nanomaterials</td>
<td>0.09</td>
</tr>
<tr>
<td>Byung Kim</td>
<td>Biophysics</td>
<td>0.21</td>
</tr>
<tr>
<td>Owen McDougal</td>
<td>Organic Chemistry, NMR, Modeling</td>
<td>0.16</td>
</tr>
<tr>
<td>Kristen Mitchell</td>
<td>Toxicology</td>
<td>0.35</td>
</tr>
<tr>
<td>Rajesh Nagarajan</td>
<td>Biochemistry, Organic Chemistry</td>
<td>0.15</td>
</tr>
<tr>
<td>Julie Oxford</td>
<td>Developmental Biology</td>
<td>0.28</td>
</tr>
<tr>
<td>Alex Punnoose</td>
<td>Nanomaterials, Nanobiology</td>
<td>0.09</td>
</tr>
<tr>
<td>Troy Rohn</td>
<td>Pharmacology, Neurobiology</td>
<td>0.22</td>
</tr>
<tr>
<td>Marcelo Serpe</td>
<td>Plant physiology and Cell Biology</td>
<td>0.09</td>
</tr>
<tr>
<td>Juliette Tinker</td>
<td>Microbiology, Vaccine Development</td>
<td>0.19</td>
</tr>
<tr>
<td>Don Warner</td>
<td>Organic Chemistry, Medicinal Chem.</td>
<td>0.05</td>
</tr>
<tr>
<td>Denise Wingett</td>
<td>Immunology, Cell Biology</td>
<td>0.17</td>
</tr>
<tr>
<td>Dong Xu</td>
<td>Computational Chemistry</td>
<td>0.07</td>
</tr>
<tr>
<td>New Hire – Dept. Biological Sciences</td>
<td>Cell Biologist</td>
<td>0.36</td>
</tr>
<tr>
<td>New Hire – Dept. Biological Sciences</td>
<td>Molecular Geneticist</td>
<td>0.24</td>
</tr>
<tr>
<td>New Hire – Dept. Biological Sciences</td>
<td>Physiologist</td>
<td>0.30</td>
</tr>
<tr>
<td>New Hire – Dept. Physics</td>
<td>Biophysicist</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Hired as replacement (retirement or otherwise); hire was made with the PhD in Biomolecular Sciences in mind.

New biomolecular faculty line funded initially by INBRE and subsequently by the university.

New biomolecular faculty line created and funded by the university (Punnoose initially funded by EPSCoR).

New biomolecular faculty line to be funded initially by INBRE and subsequently by the university.

New biomolecular faculty line to be funded by the university.

*Drs. Habig, Hanna, and Hiremath do not have program teaching assignments in the third year of the proposed program - FTE values in this table pertain to year three.

Affiliate/Adjunct Faculty: Several affiliate faculty holding doctorate degrees or Ph.D./M.D. degrees that are conducting biomedical research in the Boise area (i.e., Boise VA Medical Center) will participate in the program as graduate student mentors, graduate student committee members, research collaborators, and instructors, including Dr. Amy Bryant, Dr. Richard Olson, Dr. Dennis Stevens, and Dr. Barry Cusack.

c. Students—briefly describe the students who would be matriculating into this program.

Students entering into the program would typically have an undergraduate degree in biochemistry, biology, biophysics, cell biology, chemistry, computer science, genetics, microbiology, physics, or a closely related field. The undergraduate prerequisites for entry into this program include coursework equivalent to the following offerings at Boise State University: Cell Biology (BIOL 301), Biochemistry (CHEM 431), Calculus 1 (MATH 170), and General Physics or Physics with Calculus (PHYS 112 or PHYS 212). Deficiencies in some coursework prerequisites do not necessarily prevent students from entering the program, as they may be remedied by taking additional coursework early in the program.

The proposed program will bridge traditional fields of science into the multidisciplinary area of Biomolecular Sciences. Students trained in this program will acquire the essential skills to apply both theoretical and experimental knowledge to cross-cutting areas of biomolecular research. Because of the relative uniqueness of this multidisciplinary program, we intend to recruit students nationally and internationally, although an emphasis on recruiting students from the Western States region will exist. Initially, we anticipate some recruitment from a limited number of highly qualified Boise State undergraduate and Masters level students, as well as highly qualified students from other universities and colleges in Idaho. A concerted effort in student recruitment will be made from the onset, and with increased publicity and funding, a high quality applicant pool is expected to develop.

d. Infrastructure support – clearly document the staff support, teaching assistance, graduate students, library, equipment and instruments employed to ensure program success.

Staff support
For the participating departments (Biological Sciences, Biochemistry and Chemistry, and Physics), currently 5 full-time administrative assistants, 2 grants accountants, 6 laboratory materials supervisors/stockroom managers, and numerous work-study staff provide support to the departments, students and faculty. In addition, the affiliated Biomolecular Research Center provides research technicians for research laboratories and shared research facilities and grant writing support staff. A college-level grants accountant also provides support to this group of faculty researchers. Boise State University provides staff for pre- and post-award grant administration. Purchasing and research instrumentation acquisition for research are supported by Boise State University staff.

Teaching Assistance and Graduate Students
Assistance to faculty members will be provided by current graduate teaching assistants (13 in Biological Sciences, 3 in Biochemistry/Chemistry) that support existing Master of Science graduate programs. The implementation of the proposed program involves the creation of 15 additional teaching assistantships to support the program. Graduate students may be supported by any one of these new 15 teaching assistantship positions and/or through grant-funded research assistantships. It is anticipated that an initial student cohort will comprise 8 students in year 1, 8 students in year 2, and 14 students in year three for a total of 30 enrolled students by year 3 of program initiation.

Library Resources
Presently, library sources are not adequate for this program. Some funds are being committed at this time and we will develop a plan for further support of library resources as the program matures. Importantly, many relevant journals are available through the library through on-line subscriptions, including Science Direct, Elsevier Journals, and through inter-library loans.

Research Equipment and Instrumentation
Research equipment and instrumentation are adequate for the initiation of the program. In addition to instrumentation in faculty research laboratories, an aggregate ~$3.7 M awarded to Boise State University by the National Science Foundation Major Research Instrumentation Program for shared, multi-user instrumentation supports biomolecular research including a fluorescent activated cell sorter (FACS), a scanning x-ray photoelectron spectrometer (XPS), a confocal microscope, an x-ray, an analytical transmission electron microscope (TEM), an electron spin resonance spectrometer, and a liquid chromatography mass spectrometer (LC-MS). Boise State supports these multi-user facilities with three permanent full-time research scientists that manage these instruments. Below is a detailed list of equipment valued at greater than $100,000 supporting the proposed program.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Model/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray MicroCT Scanner</td>
<td>SkyScan 1172 X-ray micro computed tomographic scanner</td>
</tr>
<tr>
<td>Mass Spectrometer with Dionex UPLC</td>
<td>Bruker MaXis UHR-TOF mass spectrometer with electrospray ionization, hyperbolic quadripole, and attached Dionex UPLC</td>
</tr>
<tr>
<td>Mass Spectrometer</td>
<td>Bruker HCTultra ETDII ion trap mass spectrometer</td>
</tr>
<tr>
<td>Tandem Mass Spectrometer</td>
<td>ThermoElectron Deca XP-Plus tandem mass spectrometer with Surveyor two-dimensional HPLC</td>
</tr>
<tr>
<td>Confocal Microscope</td>
<td>Zeiss LSM 510 Meta 405 with Axio Observer Z1 confocal microscopy imaging system</td>
</tr>
<tr>
<td>Transmission Electron Microscope</td>
<td>JEOL 2100 LaB6 analytical transmission electron microscope with EDX and scanning TEM options</td>
</tr>
<tr>
<td>Scanning Probe Microscope</td>
<td>Veeco Metrology Digital Instruments Nanoscope IV scanning probe microscope</td>
</tr>
<tr>
<td>Atomic Force Microscope</td>
<td>SPM1000HV Control Electronics, AFM 100 AFM interface module for use with RHK control systems, AIM-MI control interface for molecular imaging and DI (PicoSPM & multimode)</td>
</tr>
<tr>
<td>In Vivo Imaging System</td>
<td>Caliper Life Sciences Xenogen IVIS® spectrum imaging system</td>
</tr>
<tr>
<td>Fluorescent Activated Cell Sorter</td>
<td>Beckman Coulter 5-laser Influx model fluorescent activated cell sorter (FACS) with 2 scatter, 13 fluorescence detectors and sort module for deposition into 96-well plates</td>
</tr>
<tr>
<td>Flow Cytometer</td>
<td>Coulter Epics XL 4 color flow cytometer</td>
</tr>
<tr>
<td>Scanning Electron Microscope</td>
<td>JEOL JSM-6340F field emission scanning electron microscope</td>
</tr>
<tr>
<td>Electron Spin Resonance Spectrometer</td>
<td>EleXsys E-500 EPR spectrometer (Bruker Bio-Spin) with 1.7 Tesla magnet and 2-300 K temperature</td>
</tr>
<tr>
<td>X-ray photoelectron spectrometer</td>
<td>PHI VersaProbe X-ray photoelectron spectrometer (XPS)</td>
</tr>
<tr>
<td>Computer Animated Visualization Environment (mini-CAVE)</td>
<td>MiniCAVE (Computer Animated Virtual Environment)- Idaho National Labs 3D visualization system provides users enhanced modeling and simulation capabilities in an immersive virtual reality display</td>
</tr>
<tr>
<td>Analytical Ultracentrifuge</td>
<td>Beckman XL-1 analytical ultracentrifuge</td>
</tr>
<tr>
<td>Beowulf Parallel Computation Cluster</td>
<td>61-node (122-processor) Beowulf parallel computation cluster for computational/modeling studies</td>
</tr>
<tr>
<td>Raman/Photoluminescence Spectrometer</td>
<td>Horiba Jobin Yvon T64000 triple monochromator with multichannel CCD detector and a single channel PMT detector</td>
</tr>
<tr>
<td>Capillary Electrophoresis</td>
<td>ABI Genetic Analyzer 3130</td>
</tr>
<tr>
<td>Nuclear Magnetic Resonance</td>
<td>Bruker Avance III 600 MHz NMR with liquids (BBO, TXI, and TCI cryoprobe) and solids (4mm MAS) probes</td>
</tr>
</tbody>
</table>
In addition to the major scientific instrumentation listed above, faculty in the biomolecular sciences have access to the following equipment: Reichert SR7000 Surface Plasmon Resonance spectrometer for real time interaction analysis, BioRad External Laser Molecular Imager, Kodak IS4000R Image Station, Robosep Robot (StemCell) for isolating immune cell subsets, Leica DM2500 fluorescent microscope with DIC objectives, Gyromax 737R incubator shaker for bacterial culturing, 4 HPLCs (including size exclusion and reverse phase chromatography and LC), NanoDrop Technologies ND-1000 for quantification of nucleic acids in small volumes, Protean Isoelectric Focusing System, Silicon Graphics Imaging Computer for 3-D modeling of molecular structures, Eppendorf Vacufuge concentrator 5301, Savant SC110A/UVS400 concentrator/vacuum system, Cary 50 microplate reader, OLIS DM 45k Spectrofluorimetry system, Stopped-Flow, BioTek microplate washer, Olympus BX60 fluorescence microscope, Nikon Eclipse TS100 microscope with fluorescence capabilities, ABI 7300 and an I-Core Smart Cycler II Real-Time PCR thermocycler, standard PCR thermocyclers (Technne and MJ Research), LI-COR Global IR2 4200 gel-based automated DNA sequencer, LI-COR Global 4300 automated DNA sequencer, Sorvall high speed centrifuge, Beckman TL100 ultracentrifuge, Omni GLH tissue homogenizer, Beckman scintillation counter, Agfa CP 1000 film processor, FX Pro Plus multi-imager (Molecular imager), 2 photodiode array spectrophotometers and 12 CCD array spectrophotometers (Hewlett-Packard Model 8452 diode array Bausch and Lomb 2000), Leica CM1950 OUVM cryostat, Accuri C6 4 color flow cytometer, molecular modeling stations fluorescence spectrometer (Ferrand Optical Mark-1), Jasco J-810 spectropolarimeter, MicroCal Microcalorimeter, field-flow fractionation channels (including thermal, electrical and flow FFF), multangle laser light scatter (MALS) detector in tandem with size exclusion chromatography (SEC) and a refractive index detector, dynamic light scatter (DLS) detector for determination of hydrodynamic radius, time-resolved UV resonance raman spectroscope, Zetasizer NanoZS for zeta potential measurements, Philips XPert x-ray powder diffractometer, Fourier transform infrared spectrometer, as well as many other items of scientific instrumentation.

Facilities
Computer labs: The departments involved in the Biomolecular Sciences graduate program have two networked laboratories dedicated for use by students enrolled in the proposed program. These computer labs have 74 workstations for general student and research use, and are networked to university servers.

Research laboratories: Each faculty member listed in this proposal is conducting active research and has dedicated laboratory space with appropriate facilities to conduct research in their discipline. Laboratories are located in the Science building, the Multi-Purpose building, and the Math/Geosciences building.

Animal Vivarium: Currently, researchers utilize the Animal Facility at the Boise VA Medical Center. A new research animal vivarium will be located on the Boise State University campus, to be built with funding from an NIH grant of nearly $4 million. Phase 1 construction consisting of ~6,370 sq. ft. is planned to begin in November 2011.

Other Resources: The College of Arts and Sciences maintains an instrument repair shop. The Simplot-Micron Instructional Technology Center provides media support including film production and satellite television. To facilitate distance collaborations, a Tandberg video conferencing unit is available for Biomolecular faculty use in the nearby Business Building. Additional federal and state government laboratories in Boise and the vicinity conducting research or work related to the Biomolecular Sciences program include the Department of Veteran Affairs Medical Center, MSTI (Mountain States Tumor Institute), MSTMRI (Mountain States Tumor and Medical Research Institute), the Health and Welfare Department lab, and the State of Idaho laboratories. In addition, collaborations between BSU faculty researchers in the Biomolecular Sciences area and St. Alphonsus and St. Lukes Regional Medical Centers are ongoing. The proposed program is also supported by the Boise State Biomolecular Research Center (BRC).

e. Future plans – discuss future plans for the expansion or off-campus delivery of the proposed program.

At the present time there are no plans to expand the proposed program off-campus.
2. Duplication – if this program is unique to the state system of higher education, a statement to that fact is needed. However, if the program is a duplication of an existing program in the system, documentation supporting the initiation of such a program must be clearly stated along with evidence of the reason(s) for the necessary duplication.

Describe the extent to which similar programs are offered in Idaho, the Pacific Northwest and states bordering Idaho. How similar or dissimilar are these programs to the program herein proposed?

The University of Idaho and Idaho State University each have several Ph.D. programs that have similarities to the proposed Ph.D. program in Biomolecular Sciences.

At the University of Idaho:

- The Ph.D. in Bioinformatics and Computational Biology has areas of focus: (i) biology, specifically focusing on the study and research of biological systems and the understanding of the molecular and genetic data, (ii) mathematics, specifically focusing on the methods and models used in genetic and molecular biological research, and (iii) computer science, with specific focus on the skills and techniques to develop and use databases and other data management systems.

- The Ph.D. in Biological and Agricultural Engineering includes specializations in water resources, bioremediation, or bioenergy. The proposed program is closest to the third of those areas, which focuses on design and testing of new ways to produce biodiesel and other forms of alternative energy from feedstock such as locally grown canola oil or manufacturing waste.

- The Ph.D. in Biology has focus in three areas: (i) ecology and evolution (animal behavior, genetics, microbial ecology, systematics), (ii) neurobiology (retinal development and neurophysiology), and reproductive biology (development, endocrinology, fertility).

- The Ph.D. in Microbiology, Molecular Biology, & Biochemistry involves research in the following areas: bioremediation, biodegradation & molecular ecology; developmental and cellular biology; cell cycle regulation; molecular machines; pathogenic mechanisms in infectious disease; signal transduction and gene regulation; and biochemistry and protein structure/function.

- The Ph.D. in Neuroscience involves investigations of the development, anatomy and physiology of the nervous system; research of cognitive and behavioral processes; and the application of mathematics and computer science to understand and model neurological function.

At Idaho State University:

- The faculty members of the Ph.D. in Biology have research expertise that falls into the areas of biomedicine, anatomy and physiology, ecology and evolution, microbiology and biochemistry, and science education.

- The faculty members of the Ph.D. in Microbiology have research expertise in the radiation effects in unicellular organisms; microbial stress response; mineral-microbe interactions; ecophysiology and molecular biology of 'extreme' microorganisms; medical mycology; microbial molecular biology; microbial diversity and evolution of prokaryotes; the biogeochemistry of novel prokaryotic isolates; and the evolution of protein structure and function.

- The PhD in Pharmaceutical Sciences has focus in three areas: pharmacology (the study of drug action on biological systems), pharmaceutics (the design and evaluation of contemporary pharmaceutical dosage forms and drug delivery systems), and drug discovery & development (the process by which new or existing chemical species are found for the treatment of various diseases and carried through preclinical and clinical studies).

We offer the following reasons to justify the creation of a new doctoral program that has similarities to existing programs at the other two universities.

1. The proposed program is distinct in its structure and emphases from those of Boise State's sister institutions. The uniqueness of the proposed program stems from its explicit bringing together of the disciplines of biology, chemistry, and physics, and more specifically the subdisciplines of molecular biology,
cell biology, physiology, biochemistry, and biophysics. None of the above programs at University of Idaho or at Idaho State University includes faculty representation from all three disciplines of biology, chemistry, and physics.

This point is reinforced in the specific recommendations that resulted from the recent Year 2 external evaluation for the NIH of the INBRE grant; the draft report (attached; Appendix C) states (emphasis added):

“The Committee was particularly impressed by the developing interdisciplinary biomolecular research program at Boise State University. If approved by the appropriate authorities, the Interdisciplinary **Biomolecular Sciences PhD Program would be unique in the State**, including researchers and students from biology, chemistry, engineering and other disciplines. The Committee noted the University’s commitment of scarce resources to support this program. Moreover, it is essential for sustaining the research momentum in the Boise area after NIH INBRE funding sunsets.”

That said, we acknowledge that although it is a unique program, there remains a substantial potential for overlap among the programs. Therefore additional reasons follow.

2. **The field of biomolecular science is vast** and can easily accommodate multiple graduate programs, as is evidenced by the fact that the University of Idaho and Idaho State University each has several doctoral programs in related fields, as do essentially all research universities.

In addition, there is little overlap at the areas of specific research focus of Boise State University researchers with the areas of specific focus of researchers at the other institutions. The following table contains descriptions of areas of specific research focus research of the faculty members associated with the proposed Ph.D. in Biomolecular Sciences. Our examination of the web pages of faculty members at the University of Idaho and at Idaho State University revealed only occasional overlaps of specific research focus.

<table>
<thead>
<tr>
<th>Boise State University faculty in Biomolecular Sciences: areas of specific research focus.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmaceutical Development and Characterization</td>
</tr>
<tr>
<td>• Creation and characterization of analogs of the chemotherapeutics drugs anthracycline and mitomycin without cardiotoxic side effects, and study of the mechanisms of cardiotoxicity.</td>
</tr>
<tr>
<td>• Using in vivo, in vitro, and in silico preclinical approaches to discover and develop natural products for treatment of infectious disease and cancer.</td>
</tr>
<tr>
<td>• Development of new anti-cancer drugs based on artificial protein and nullomer DNA sequences</td>
</tr>
<tr>
<td>• Computational prediction, design, synthesis, and evaluation of molecular probes that specifically target nicotinic acetylcholine receptor isoforms significant to Parkinson’s disease therapy.</td>
</tr>
<tr>
<td>• Design and development of nanoparticle-based novel nanomedicines to provide targeted treatment of cancer, autoimmune diseases, and bacterial diseases.</td>
</tr>
<tr>
<td>• Use of biofunctionalized multifunctional nanoparticle probes to improve targeted delivery and photothermaltherapy of cancer. Use of liposomes as carriers for targeted and controlled drug delivery.</td>
</tr>
<tr>
<td>• Development of targeted therapeutics for leukemias/lymphomas, respiratory diseases, and immune disorders, and the potential utility of novel anthracycline drug analogs for the treatment of autoimmune diseases.</td>
</tr>
<tr>
<td>• Structure-based drug design and virtual screening techniques to discover novel therapeutic approaches to microbial targets, infectious diseases, and other diseases such as cancer, diabetes, autoimmunity, and inflammation.</td>
</tr>
<tr>
<td>• Development of potential therapeutics that target Oncostatin-M signaling for the treatment of breast cancer metastasis to bone.</td>
</tr>
</tbody>
</table>
Vaccine and antibiotic development
- Synthesis and testing of oral vaccines for infectious disease, e.g., an oral vaccine candidate for West Nile virus.
- Development of antibiotics with novel mechanisms of action, e.g., characterization of a novel antibiotic with activity against E. coli responsible for hemolytic-uremic syndrome.
- Design of inhibitors of biofilm formation as a means of controlling virulence in *P. aeruginosa*, a biofilm producing bacterium implicated in various diseases including meningitis, cystic fibrosis and pneumonia.
- Development of non-toxic derivatives of bacterial enterotoxins as vaccines that can be delivered through novel routes, such as the nose or mouth, targeting, for example, *Staphylococcus aureus*, which causes antibiotic-resistant hospital-acquired infections in humans and mastitis in dairy cattle.

Basic biomolecular research
- Planar bilayer lipid membranes formation and characterization; protein reconstitution in artificial bilayer lipid membranes; electrical and optical characterization of transmembrane transporter insertion and functioning; liposome preparation, loading, functionalization, proteoliposomes.
- Synthesis of bioinorganic complexes to model metalloenzyme active sites and reactivity.
- Development of tools for the interpretation of mass-spectrometry based proteomics data, including improved MS/MS database search accuracy, improved peptide mass fingerprint accuracy using peak height statistics, and integration of bottom-up with top-down proteomic data sets. Examination of aspects of antibiotic drug resistance in *E. coli* and *P. aeruginosae* using a systems biology approach.
- Modeling of nanoscale biophysical systems and study of physical interactions in biomolecular systems, including interactions of metal oxide nanoparticles with the outer membrane of bacteria and cancer cells.
- Use of biofunctionalized multifunctional nanoparticle probes to improve targeted delivery and photothermal therapy of cancer.
- Quantitative measurement of biomolecular interactions on various levels in viral, bacterial and cellular systems as well as single molecule using scanning probe microscopy, interfacial water research, single molecular force microscopy, electrochemical scanning tunneling microscopy, nanotribology, and nanoindentation.
- Use of computer simulation techniques including molecular dynamics, brownian dynamics, and coarse grained modeling to probe the structures, functions, interactions of proteins and their complexes.
- Investigation of the biophysical and biochemical interactions between nanoparticles and biological systems.
- Study of mechanisms by which biological soil crsuts and soil fungi affect establishment of vascular plants.

Biological Basis of Disease
- Study of the molecular basis of tumor development and cancer metastasis, with focus on the role of Oncostatin M in breast cancer metastasis, specifically to bone.
- Study of the structure and function of extracellular matrix molecules, cell signaling, tissue engineering, cartilage regeneration, and biomaterials. Cause and treatment of arthritis, osteoporosis, hearing loss, blindness, cleft palate and other birth defects.
- Study of the role of the immune system and non-parenchymal cells in regulation of liver regeneration, the mechanisms of cell cycle regulation by aryl hydrocarbon receptor ligands, and linking dioxin toxicity to cell cycle regulation.
- Study of the role of caspases in promoting pathology associated with Alzheimer’s Disease and Parkinson’s Disease, and exploration of treatment possibilities such as the use of a caspase inhibitor.
- Using proteomics to understand host-virus interactions, combining agent-based modeling and evolutionary search techniques to explore complex systems (e.g. tissue regeneration).
- Embryonic mammary development, role of parathyroid hormone related protein signaling and the mechanism of its crosstalk with estrogen, Wnt and Bone Morphogenic Protein signaling in mammary development and breast cancer, tumor stromal interactions in breast cancer.

Biofuels development
- Microbial catalysis of biomass; advanced bio-based catalyst development; development of third generation biofuels; conversion of agricultural, municipal, and other organic rich wastes to biofuels and bio-products; design and deployment of advanced microbial catalysts.
3. The program will facilitate collaboration and cooperation among the universities. The proposed program is a key deliverable of Idaho’s INBRE grant from NIH, which has funded a highly successful cooperative effort among the three universities. As noted above, INBRE (and predecessor BRIN) grants have brought more than $44 million in federal funding to Idaho, providing funds to facilitate development of biomedical research and research collaborations in Idaho. In their draft report, the INBRE external reviewers recently stated in their draft report (attached; Appendix C; emphasis added):

"…the Biomolecular Sciences PhD Program… would be a unique interdisciplinary program, and would clearly complement and enhance the existing PhD programs at UI and ISU. The potential for inter-institutional collaborations between these programs is outstanding."

A memo (attached; Appendix C) from Dr. Scott Minnich, faculty member at the University of Idaho and Associate Director of Idaho INBRE, notes that (emphasis added):

"In summary, the faculty, the environment, and the students at BSU are poised to expand graduate training at the Ph.D. level. The emphasis in biomolecular sciences will not only be unique, but will further enhance collaborations in the biomedical research across Idaho."

As noted earlier in this proposal, a letter of support (attached; Appendix C) for the Ph.D. in Biomolecular Sciences from Dr. Carolyn Bohach, University of Idaho Faculty member and Director of Idaho INBRE, notes that (emphasis added):

"INBRE and the proposed Biomolecular Sciences Doctoral Program are both multidisciplinary, collaborative, and focus on the continued growth of research and research-training programs."

"Your proposal for the establishment of a Biomolecular Sciences Doctoral Program builds on the early efforts of INBRE and will, I believe, complement existing graduate programs and serve Idaho well by creating a valuable training and research resource for the state."

It is also worth noting the potential for collaborations between faculty members in the biomolecular sciences that exist outside the realm of biomedicine and the NIH. For example, in his work on microbial catalysis of biomass to create biofuels, Boise State University faculty member Dr. Kevin Feris is collaborating with several members of the University of Idaho faculty.

4. The proposed program will provide opportunities for sharing both the curriculum and faculty expertise among institutions. There will be increased opportunities for faculty members to serve on graduate committees at other institutions. Graduate students enrolled in programs at the University of Idaho and Idaho State, and who spend significant time in the Treasure Valley, will be able to enroll in doctoral level coursework at Boise State University. Doctoral-level courses in the biomolecular sciences at Boise State will be made available via distance delivery methods to students at other institutions. In his letter of support for the proposed program, (Appendix B) by Dr. J.W. Rogers, Director of the Center for Advanced Energy and Associate Director of INL, noted that the proposed program would be:

"…a nice complement to the Bioinformatics and Computational Biology Program offered at the University of Idaho."

5. The program will provide substantial local benefit. As is described below and is documented in letters of support, the proposed program will (i) produce research results with the potential to have substantial economic benefit as intellectual property, e.g., biomaterials and biotechnological inventions, (ii) produce research results that provide societal benefit by increasing our understanding the causes of human disease and developing cures for those diseases, (iii) provide educational opportunities to local industry and government scientists, (iv) make the region more attractive to biotechnology businesses considering relocation to this area.

"We…believe that [the proposed program] is an important step in meeting the needs of our area. Personally, I believe that biotech is the greatest growth opportunity for the future. We can either prepare for it and benefit, or ignore it and be left behind." “Our R&D includes many collaborations with universities…We would prefer to see more of this type of work being done in Idaho”—Steve Lackie, President of Sapidyne, Inc. (Appendix B)
The following are similar programs in nearby states.

Molecular Biosciences Program, Montana State University. Areas of study include Cell, Developmental and Molecular Biology; Immunology and Infectious Disease; Bioinformatics; Genomics and Proteomics; Biophysics; Chemical Biology; Life in Extreme Environments; Bio-inspired Materials; Environmental Microbiology; Virology, and Plant Sciences.

School of Molecular Biosciences, Washington State University. Molecular biosciences can be best viewed as a dynamic continuum in which approaches derived from chemistry, physics, and biology are utilized to address the fundamental mechanisms of living things. The School offers Ph.D. degrees in Biochemistry, Biotechnology, Genetics and Cell Biology, and Microbiology. Options within these degrees offer flexibility to add emphasis in chemistry, molecular biology, physics, and biotechnology.

Biomolecular Science and Engineering Program, UC Santa Barbara. This program offers a unique mix for graduate training and research at the frontiers of Biochemistry, Molecular Biology, Bioengineering, and Biomolecular Materials.

The Graduate Program in Molecular and Cellular Biosciences, Oregon Health and Science University. Students can pursue interdisciplinary interests across departmental boundaries in areas including the autonomic nervous system, cancer biology, chemical biology, developmental biology, endocrinology, gene regulation, immunology, inflammatory processes, metabolism, microbial pathogenesis, signal transduction, structural biology, and virology.

Environmental and Biomolecular Science Program, Oregon Health and Sciences University. The program spans a wide scope of research areas that involve study of physical, chemical, and biological processes using biomolecular, chemical, genetic, and computational approaches.

The Molecular Biosciences Interdisciplinary Program, University of Nevada at Reno. The program involves 60 faculty members from nine different departments. Research areas include biochemistry, bioinformatics, cancer biology, cardiovascular research, cell biology, gametogenesis and fertility, functional genomics, hormones, immunology, infectious diseases, insect biochemistry, insect molecular genetics, neuroscience, metabolic regulation, metabolomics, microbiology, microbial ecology, nutrition, regulation of gene expression, pathology, protein structure-function, plant biochemistry, plant molecular genetics, proteomics, signal transduction, smooth muscle biology, stem cell biology, and virology. Students earn their graduate degree in one of three dissertation programs: Biochemistry, Cellular and Molecular Biology, and Cellular and Molecular Pharmacology and Physiology.

4. **Centrality** – documentation ensuring that program is consistent with the Board’s policy on role and mission is required. In addition, describe how the proposed program relates to the Board’s current Statewide Plan for Higher Education as well as the institution’s long-range plan.

The following excerpts are from the current role and mission statement formulated by the State Board of Education (SBOE). The excerpts indicate that the proposed program is consistent with SBOE intentions for Boise State University.

Boise State University “offers a variety of masters and select doctoral degrees” and “conducts coordinated and externally funded research studies”.

“Boise State University is a comprehensive, urban university serving a diverse population through undergraduate and graduate programs, research, and state and regional public service”.

“Boise State University will formulate its academic plan and generate programs with primary emphasis on business and economics, engineering, the social sciences, public affairs, the performing arts, and teacher preparation. Boise State University will give continuing emphasis in the areas of the health professions, the physical and biological sciences, and education and will maintain basic
strengths in the liberal arts and sciences, which provide the core curriculum or general education portion of the curriculum”.

The proposed program is also consistent with the strategic plan for Boise State University, called Charting the Course, which places a focus on “exceptional research defined by progressive scholarship and creative activity, and graduate programs that have groundbreaking applications locally, regionally, and globally”.

5. Demand – address student, regional and statewide needs.

a. Summarize the needs assessment that was conducted to justify the proposal. The needs assessment should address the following: statement of the problem/concern; the assessment team/the assessment plan (goals, strategies, timelines); planning data collection; implementing date collection; dissemination of assessment results; program design and on-going assessment. (See Board policy III.X., Outcomes Assessment.)

There is a substantial need for the educational opportunities that a PhD program in Biomolecular Sciences would provide, for the resulting PhD graduates, and for the research that a PhD program in Biomolecular Sciences would produce. The needs assessment that led to this proposal was garnered from a number of sources over the past 5 years. Direct inquiries from prospective students to the departments and faculty expressing their interest in a biomolecular-related doctoral program is one of the primary motivations for the proposed program. Additional support has been provided by various local businesses and employers interested in highly trained graduates with expertise in biomolecular science-related disciplines and in the research that would result from the program. Letters of support from various local biomedical and biotechnological research companies, research institutes, hospital systems, and government agencies are attached in Appendix B.

A. The National Need for Research by PhD students and their Faculty Mentors

The National Institutes of Health devotes more than $21 billion per year towards biomedical and biomolecular research. The National Science Foundation and other agencies, including the Department of Energy and the Department of Defense, also devote a large amount of funds in support of biological and biomolecular research (i.e., $6.2 billion, $604 million, $94 million, respectively). Furthermore, a number of foundations, including the M.J. Murdock Charitable Trust, the American Federation for Aging, and the Susan Komen Breast Cancer Foundation also invest substantial sums in grants to biological research. The fact that various federal and private entities collectively fund many billions of dollars worth of research grants each year illustrates the great need for research in the biological and biomolecular sciences.

The proposed academic program will fuse physical sciences and the basic molecular life sciences into a single curriculum, removing traditional barriers to interdisciplinary thinking, training, and research at the interface between the life sciences, chemistry, physics, and computational biology. Our interdisciplinary doctoral program in Biomolecular Sciences will benefit from and contribute to the increasing synergy between life sciences and the physical sciences, and will contribute to growth in areas such as biotechnology, biomaterials, and nanobiotechnology in the public and private sectors.

Research presently underway at Boise State University demonstrates that the proposed program will help meet research needs of federal and private entities. For example,

- We are presently conducting projects that will provide basic information on the causes of various diseases, to aid in the development of therapies. Examples include breast cancer, leukemias and lymphomas, osteoarthritis, Rett Syndrome, Alzheimer’s disease, Parkinson’s disease, asthma, retinal detachment, cholera, vaccine development, West Nile Virus, drug resistant bacterial infections (i.e., MRSA), parasitic infections, and genetic analysis of human populations.

- We are presently conducting projects that will aid in the development of materials that will be of substantial use to society. Examples include artificial cartilage, anti-fouling compounds, biocompatible containment vessels, biofuels, targeted drug development for treatment of microbial infections and new chemotherapeutic drugs, nanomedicine based approaches for treatment of cancer, biosensors for detection of pathogens, and instrument development to support biotechnology and medical diagnostics.
B. The Local Need for Research and for Graduate Educational Opportunities.

1. Local Industry. The local biotechnology industry will benefit from the creation of a highly-trained local workforce and from research discoveries that come from the new program. It is important to note that companies often will assess the availability of appropriate educational programs before relocating to an area. The following quotes are from letters of support from local industry (attached; Appendix B):

 “It would be favorable for us if BSU were to have a PhD program in Biomolecular Sciences for developing a local candidate pool as well as for establishing greater collaboration potential between us and the university.”—Michael Hill, PhD, President of Boise Technology, Inc.

 “[the proposed program] will provide an advanced degree option in interdisciplinary Biomolecular Science for employees who would otherwise need to relocate to pursue advanced education in the areas of biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.”—Sandy Koch, Biology Supervisor, and Brian McGovern, Microbiology Supervisor, Analytical Laboratories, Inc.

 "Having local access to graduate level science courses would be a great asset to our employee development and talent management. “It would be an asset to our research endeavors in Idaho to have access to specific courses or a full PhD program without travel or relocation…”—Teresa Mitzel, Head of Product Evaluation and Advancement, Syngenta Seeds, Inc.

 “The field of medicine is changing as technologies continue to advance rapidly. All companies must keep up in order to stay competitive. For this reason, we welcome a program where innovative research in drug development and biomedical research occur in our home town.”—Carl Thornfeldt, M.D., Founder and CEO of Episciences, Inc.

 “At OD260, Inc., we value a workforce with this type of advanced education. Graduates of the PhD program in Biomolecular Sciences will be prepared and well aligned to industry requirements.”—Xavier Danthinne, PhD, President of O.D.260, Inc.

2. Biomedical Research and Health Care Organizations. There are several regional research and health care entities that would benefit from PhD-level scientists trained in biomolecular sciences. These include basic and clinical researchers located at the 1) Boise VA Medical Center (VAMC), 2) Mountain States Tumor and Medical Research Institute (MSTMRI), 3) Mountain States Tumor Institute (MSTI), 4) St. Luke’s Health System, 5) St. Alphonsus Health System, and 6) the Idaho Bureau of Laboratories. A variety of clinical and federally funded biomedical research programs are conducted at each of these facilities.

 The Boise VAMC has long history of biomedical research with research programs specializing in pulmonary diseases, drug resistant microbial infections, cardiovascular disease, pharmacology, mechanisms of cancer chemotherapeutics, and new drug development. Growth in the research capacity at the Boise VAMC is expected to increase with construction of a new research building planned for this year. A local pool of biomolecular science PhD graduates will enhance the established VA research programs, and is also important for attracting new research scientists to their expanding facility. It is also important to note that many of the VAMC researchers have active collaborations with faculty participants listed on this proposal. Thus, the existing synergy between VAMC and Biomolecular Science research faculty would be further enhanced by the implementation of the proposed doctoral program, and the VAMC leaders have indicated that our graduates would be actively recruited.

 “…we are happy that Boise State will be supporting a program that will train scientists who are capable of doing high-quality independent research who can work as part of an interdisciplinary team…”—Dennis Stevens, PhD, MD, Associate Chief of Staff for Research and Development, Veterans Affairs Medical Center (Appendix B)

Researchers at MSTMRI and MSTI, which are part of the Boise-based St. Luke’s Health System also conduct a variety of research projects including federally funded initiatives as well as applied clinical research. There is
already a strong relationship between MSTMRI and many of the BSU faculty researchers are members of this organization. MSTMRI provides pilot project grants so researchers can obtain crucial preliminary data and parlay this opportunity into larger federally funded grant awards. Reciprocal exchanges of student researchers between BSU biomolecular science faculty and MSTMRI researchers is fairly common, and expected to be even more commonplace with the implementation of the proposed doctoral program. One of the expressed future goals of MSTMRI is to facilitate translational research which strives to bridge the gap between basic research and new approaches and improvements to patient care. To meet this goal, a local pool of PhD-level researchers is an important consideration.

“We...have long valued our association with the faculty at Boise State, and look forward to working with the graduates of the Biomolecular Sciences program. We have a special interest in individuals who might undertake translational cancer research.”—Theodore Walters, MD, Director of St. Luke’s MSTMRI (Appendix B)

Researchers and clinicians associated with St. Luke’s Health System and St. Alphonsus Health System will also benefit from collaborations with our faculty members and from the research that will result from the program.

“Our physicians have enjoyed the collaboration with your many scientific centers and agree such a PhD program will further the efforts to serve the people of our region. By joining forces with your biologists, chemists, biochemists, and physicists with our clinical physicians, pharmacists, and nurse researchers we will indeed create an advanced and contemporary atmosphere for the advancement of students’ education and experience.”—David Pate, MD, JD, President and CEO, St. Luke’s Health System. (Appendix B)

The Idaho Bureau of Laboratories provides the state with research in the realm of public health.

“The program's research foci in bioinformatics, genomics, molecular forensics, vaccinology, and next generation antibiotic development are particularly relevant to public health laboratory work. As such, the Idaho Bureau of Laboratories (IBL) would benefit from close association with faculty and students in the program.”—Christopher Ball, PhD, Bureau Chief, Idaho Bureau of Laboratories (Appendix B)

3. Energy Research Entities. One of the research programs in our proposed program focuses on the development of microbial catalysts that can be used to convert various forms of biomass into third-generation biofuels. The research from that program and the students trained in those methodologies will benefit the state of Idaho.

“...we have active programs in bioenergy, biofuels, biocatalysis, bioconversion, microbiomes, and biological aspects of carbon management...At the INL and CAES, we are constantly seeking qualified scientists and engineers to work in these disciplines and typically we must recruit out of state. Your proposed program would go a long way toward providing a highly skilled workforce programs as well as the ever-increasing workforce pipeline necessary to support the growing biotechnology industry in the state of Idaho.”—J.W. Rogers, Jr., Director of the Center for Advanced Energy Studies and Associate Director of the Idaho National Laboratories (Appendix B)

“...the program has the potential to have substantial impact on Idaho’s ability to create alternative forms of energy and diversify our economic base.”—John Chatburn, Interim Administrator, Office of Energy Resources, State of Idaho (Appendix B)

b. Students – explain the most likely source of students who will be expected to enroll (full-time, part-time, outreach, etc.). Document student demand by providing information you have about student interest in the proposed program from inside and outside the institution.

Need for an interdisciplinary PhD program by potential local and out-of-area students. Boise State faculty members receive numerous inquiries each year from students interested in receiving a PhD in Biomolecular Sciences. The bulk of these inquiries come from outside of the area, from people who have assumed Boise State already has a PhD in Biomolecular Sciences (or related area) in place. Faculty also receive numerous
inquiries from individuals employed locally (e.g., local biomedical research entities) about the expected timing for a Biomolecular Sciences doctoral program. The need extends not only to providing training to students at the doctoral level, but that the training will be delivered at the intersection of disciplines thereby preparing students for the manner in which future research will be conducted.

“Given the interdisciplinary nature of the program, several IBL employees have expressed interest in enrolling when the program is approved. Having IBL scientists in this program would provide an excellent opportunity to advance the research, training and outreach missions of the Bureau.”—Christopher Ball, Bureau Chief, Idaho Department of Laboratories (Appendix B)

“…having a local graduate program for graduate level studies would help with our employees who wish to further their education.”—Steve Lackie, President, Sapidyne, Inc. (Appendix B)

Failure to provide graduate education opportunities may lead to the loss of valuable workers by local industry.

“We have lost a few of our brightest junior level scientists to graduate schools out of state. We would welcome local graduate programs that might help us to retain our brightest with the opportunity to enroll in a local graduate program.”—Michael Hill, PhD, President of Boise Technology, Inc. (Appendix B)

“We have had several undergraduate level employees continue their education, and so far this has meant leaving the area. This is not only a loss to our company, but is also a loss of talent to the state.”—Steve Lackie, President, Sapidyne, Inc. (Appendix B)

The establishment of the Biomolecular Sciences PhD program has been in discussion for several years, and students have enrolled at Boise State, anticipating the beginning of the program. Therefore, during the first year of the proposed program, due to demand and the number of highly qualified students, we expect that most (80%) of prospective students will be fulltime students who have recently graduated with an undergraduate BS degree from Boise State University or the surrounding Treasure Valley area. The remaining 20% of students are expected to be part-time students, or recent graduates, who are now employed in the local workforce seeking a graduate degree for career advancement. By year two of the program, our national recruitment efforts will be well underway and we expect that ~50% of students in the program will be from the local area, with the remaining 50% recruited from out of state. By the end of the year five, we expect that ~70% of students will be recruited from out of state. We are anticipating a cohort of 8 students in year one, followed by 8 more students in year 2, and ramping up to a combined total of 30 students by year 3 of program implementation.

Differentiate between the projected enrollment of new students and those expected to shift from other program(s) within the institution.

Projected enrollment is expected to be largely based on new students entering the program. Any shifts from other on-campus programs would likely be from chemistry or biology students who have entered the Masters of Science programs in these departments because a doctoral degree was not available. Based on differences in program completion times and desired employment goals pending graduation, it is expected that only a few students would shift programs.

d. Expansion or extension – if the program is an expansion or extension of an existing program, describe the nature of that expansion or extension. If the program is to be delivered off-campus, summarize the rationale and needs assessment.

NA – the proposed program is a new program that will be delivered on the Boise State University main campus.
6. Resources – fiscal impact and budget

On this form, indicate the planned FTE enrollment, estimated expenditures, and projected revenues for the first three fiscal years (FY) of the program. Include both the reallocation of existing resources and anticipated or requested new resources. Second and third year estimates should be in constant dollars. Amounts should reflect explanations of subsequent pages. If the program is a contract related, explain the fiscal sources and the year-to-year commitment from the contracting agency(ies) or party(ies).

I. PLANNED STUDENT ENROLLMENT

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE</td>
<td>Headcount</td>
<td>FTE</td>
<td>Headcount</td>
</tr>
<tr>
<td>A. New enrollments</td>
<td>7.9</td>
<td>8</td>
<td>15.8</td>
</tr>
<tr>
<td>B. Shifting enrollments</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

II. EXPENDITURES

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTE</td>
<td>Cost</td>
<td>FTE</td>
<td>Cost</td>
</tr>
<tr>
<td>A. Personnel Costs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Faculty</td>
<td>1.52</td>
<td>$100,323</td>
<td>3.3</td>
</tr>
<tr>
<td>2. Administrators</td>
<td>0.45</td>
<td>$42,712</td>
<td>0.5</td>
</tr>
<tr>
<td>3. Adjunct faculty</td>
<td>0</td>
<td>$0</td>
<td>-</td>
</tr>
<tr>
<td>4. Graduate/instructional & research assistants</td>
<td>5.5</td>
<td>$96,000</td>
<td>11.0</td>
</tr>
<tr>
<td>5. Research personnel</td>
<td>9.0</td>
<td>$355,355</td>
<td>9.0</td>
</tr>
<tr>
<td>6. Support personnel</td>
<td>2.15</td>
<td>$75,763</td>
<td>2.2</td>
</tr>
<tr>
<td>7. Fringe benefits</td>
<td></td>
<td>$193,140</td>
<td></td>
</tr>
<tr>
<td>8. Other: T/F Waivers</td>
<td></td>
<td>$34,383</td>
<td></td>
</tr>
<tr>
<td>Total FTE Personnel And Costs:</td>
<td>21.1</td>
<td>897,576</td>
<td>30.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Operating expenditures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Travel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Professional services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Other services</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Communications</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Utilities
6. Materials & supplies
7. Rentals
8. Repairs & maintenance
9. Materials & goods for manufacture & resale
10. Miscellaneous

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials & supplies</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rentals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repairs & maintenance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials & goods for manufacture & resale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$36,000</td>
<td>$36,000</td>
<td>$36,000</td>
</tr>
</tbody>
</table>

Total Operating Expenditures:

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$36,000</td>
<td>$36,000</td>
<td>$36,000</td>
</tr>
</tbody>
</table>

C. Capital Outlay

1. Library resources
2. Equipment

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library resources</td>
<td>$45,000</td>
<td>$45,000</td>
<td>$45,000</td>
</tr>
<tr>
<td>Equipment</td>
<td>$450,000</td>
<td>$450,000</td>
<td>$450,000</td>
</tr>
</tbody>
</table>

Total Capital Outlay:

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$495,000</td>
<td>$495,000</td>
<td>$495,000</td>
</tr>
</tbody>
</table>

D. Physical facilities

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction or major renovation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

E. Indirect costs (overhead)

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

GRAND TOTAL EXPENDITURES:

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,428,576</td>
<td>$1,734,237</td>
<td>$2,429,624</td>
</tr>
</tbody>
</table>

III. REVENUES

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Source of funds

1. Appropriated funds -- Reallocation – MCO
2. Appropriated funds -- New – MCO
3. Federal funds
4. Other grants
5. Fees
6. Other:

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriated funds -- Reallocation – MCO</td>
<td>$568,830</td>
<td>$809,958</td>
<td>$1,062,768</td>
</tr>
<tr>
<td>Appropriated funds -- New – MCO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Federal funds</td>
<td>$859,746</td>
<td>$924,279</td>
<td>$1,366,856</td>
</tr>
<tr>
<td>Other grants</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRANT TOTAL REVENUES:

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$1,428,576</td>
<td>$1,734,237</td>
<td>$2,429,624</td>
</tr>
</tbody>
</table>
B. Nature of Funds

<table>
<thead>
<tr>
<th></th>
<th>FY 13</th>
<th>FY 14</th>
<th>FY 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recurring*</td>
<td>$978,576</td>
<td>$1,284,237</td>
<td>$1,979,624</td>
</tr>
<tr>
<td>2. Non-recurring**</td>
<td>$450,000</td>
<td>$450,000</td>
<td>$450,000</td>
</tr>
<tr>
<td>GRANT TOTAL</td>
<td>$1,428,576</td>
<td>$1,734,237</td>
<td>$2,429,624</td>
</tr>
</tbody>
</table>

* Recurring is defined as ongoing operating budget for the program that will become part of the base.

** Non-recurring is defined as one-time funding in a fiscal year and not part of the base.

NOTES for Line Items in Tables I, II, and III

I.A One student FTE is assumed to be 24 student credits; not every student is projected to take 24 credits per year.

I.B Although some students may shift from M.S. programs into the Ph.D. program, this effect is expected to be negligible.

II.A.1 Faculty FTE estimates are tied to university faculty workload policy 4560 and based on three-year teaching plans from the Department of Biological Sciences, Department of Chemistry and Biochemistry, and Department of Physics. Faculty cost estimates are based on academic year salaries, with FY11 salaries assumed for the first year of the program, and then 2% annual adjustments applied for the second and third years of the program. See tables attached after section 6.e for details.

II.A.2 Administrative FTE estimates are based on experience with existing PhD programs at the university and allow for the multi-departmental nature of the proposed program. Administrative cost estimates are based on administrative contract salaries that vary from 10 months to 12 months depending on the position, with FY11 salaries assumed for the first year of the program, and then 2% annual adjustments applied for the second and third years of the program. See tables attached after section 6.e for details.

II.A.3 Use of adjunct faculty is not anticipated for this program.

II.A.4 The university will fund (in year 3) fifteen graduate instructional assistants; those GAs will not teach in the PhD program but will provide assistance with the delivery of undergraduate programs and provide research assistance in the summer. Therefore, the FTE devoted to the proposed program is calculated as one-half of the university-funded GAs, i.e., 7.5 FTE in the third year. It is estimated that by the third year an equal number of graduate assistantships (i.e., 15) will be funded through federal grants; therefore for that year, 7.5 FTE funding for graduate assistantships is ascribed to appropriated funds and 15 FTE to federal funds. A graduate assistantship includes a 12-month $24,000 stipend and an academic year tuition and fee waiver. Annual adjustments of 2% and 5% are assumed for stipends and tuition and fee waivers, respectively.

II.A.5 See tables attached after section 6.e for details on research and research support personnel.

II.A.6 See tables attached after section 6.e for details on administrative support personnel.

II.A.7 Fringe benefits are computed using FY11 fringe rate parameters defined for various employee categories by the university budget office and available at http://finad.boisestate.edu/budget/pdf/FY11fringe.pdf. The fringe rate for graduate assistants is computed at 4% during the academic year but 10% during the summer as requested by the university research office.

II.A.8 The FY11 cost of a full-time academic year graduate tuition and fee waiver is $7,774. This cost is projected into future years using an assumed annual increase of 5%. Thus, we project a full-time academic year graduate tuition and fee waiver to be $7,774x1.05x1.05 = $8,571 at program start in FY13, and then to increase annually by 5% for the first three years of the program.

II.B.10 The program is expected to increase administrative operating expenditures by $36,000 per year distributed variably among irregular salaries, travel, communications, student recruiting expenses, seminar speakers, and materials and supplies. Annual percentage increases of these costs are not projected but this line will be adjusted to reflect actual experience with the program.

II.C.1 Cost estimates for new library resource cost are based on discussions between program faculty and the Dean of Libraries. See section 6.d for details.

II.C.2 Of the costs listed here, $200,000 per year is the estimated new faculty startup costs that will be paid in each of the first three years of the program (startup costs are one-time costs). The source of startup funds is indirect costs from federal grants. See section 6.d for details. We estimate that an additional $250,000 per year will be secured from federal equipment grants, such as Major Research Instrumentation grants. We have averaged approximately that amount in past years.

II.E Indirect costs associated with the proposed program are not estimated for this proposal, but are part of the indirect cost structure of the university.
III.A.3 Estimate of funding from federal grants is based on current grant funding of tenured/tenure-track faculty salaries, current grant funding of research staff, and estimated grant funding of graduate assistantships (see note II.A.4 above).

III.B. See explanation in section 6.e. below.

6.a. Faculty and Staff Expenditures
Project for the first three years of the program, the credit hours to be generated by each faculty member (full-time and part-time), graduate assistant, and other instructional personnel. Also indicate salaries. After total student credit hours, convert to an FTE student basis. Please provide totals for each of the three years presented. Salaries and FTE students should reflect amounts shown on budget schedule. Project the need and cost for support personnel and any other personnel expenditures for the first three years of the program.

Detailed three-year lists and projections for faculty and staff expenditures, including research, research support, and administrative support personnel, are provided in the tables attached after section 6.e.

6.b. Administrative Expenditures
Describe the proposed administrative structure necessary to ensure program success and the cost of that support. Include a statement concerning the involvement of other departments, colleges, or other institutions and the estimated cost of their involvement in the proposed program.

The program director will report to the Dean of the College of Arts and Sciences as a Chair-level administrator. The three department chairs of Biology, Chemistry, and Physics and the director will work as a group to manage finances, policy, and administration of the program. The director and three department chairs will work together to ensure that the required courses are taught on an appropriate schedule, to ensure the equitable assignment of resources such as graduate teaching assistantships, and to ensure effective management of program processes such as student recruitment, admission recommendations, student advising, progress exams, and dissertation defenses. The director and the chairs will be supported by an appropriate number of administrative support personnel. Detailed three-year lists and projections for administrators and administrative support personnel are provided in the tables attached after section 6.e.

6.c. Operating Expenditures (travel, professional services, etc.)
Briefly explain the need and cost for operating expenditures.

The proposed program is expected to generate increased annual administrative operating costs estimated at approximately 3% of the program personnel costs or $36,000. These increased administrative operating costs will vary from year to year among irregular salaries, travel, communications, student recruiting expenses, seminar speakers, and materials and supplies. Increased research operating costs are to be paid by grants and contracts.

6.d. Capital Outlay
(1) Library Resources
(a) Evaluate library resources, including personnel and space. Are they adequate for the operation of the present program? If not, explain the action necessary to ensure program success.

Library staff members have analyzed our holdings in light of the proposed program and have identified library resources needed to improve the quality of the program. At this time $45,000 per year has been committed to purchase top priority items. A plan is being developed to continue to build the strength of the library resources for the proposed program.

(b) Indicate the costs for the proposed program including personnel, space, equipment, monographs, journals, and materials required for the program.

See comments below in Section 6.e. below regarding the investment of funds in space for laboratories and an animal care facility.

(c) For off-campus programs, clearly indicate how the library resources are to be provided.
The proposed program is not an off campus program.

(2) Equipment/Instruments
Describe the need for any laboratory instruments, computer(s), or other equipment. List presently available equipment and any equipment (and cost) which must be obtained to support the proposed program.

Presently available equipment, instrumentation, and special research facilities are described in the body of this proposal. New faculty hires associated with the proposed program will require one-time startup expenditures, primarily for instrumentation. These startup expenditures are projected to be $200,000 in each of years one, two, and three of the program. In addition, the University has been very successful in securing Major Research Instrumentation grants from the National Science Foundation, averaging approximately $250,000 per year.

6.e. Revenue Sources
(1) If funding is to come from the reallocation of existing state appropriated funds, please indicate the sources of the reallocation. What impact will the reallocation of funds in support of the program have on other programs?

The creation of the proposed PhD in Biomolecular Sciences has been our goal since the very beginning of BRIN/INBRE a decade ago, and Boise State University has already invested substantial resources to lay the foundation for the proposed program:
• Nine new tenure-track faculty hires have been made in support of the Ph.D. in Biomolecular Sciences; four additional hires are planned. Additionally, four new research faculty members will participate in the PhD BMS.
 o Two new biomolecular faculty lines were funded initially by INBRE and subsequently by the university.
 o Two new biomolecular faculty lines were created and funded by the university, one initially by an EPSCoR grant.
 o Five biomolecular faculty lines were hired as retirement replacements with the Ph.D. in Biomolecular Sciences in mind during the hiring process.
• Approximately $13 million has been spent or committed to create facilities that support biomolecular research.
 o $3.4 million of PBFAC Set B funding spent to convert and remodel space for new research laboratories, in order to accommodate new biomolecular PhD faculty members.
 o $5.4 million of PBFAC Set B funding spent on HVAC and electrical upgrades of buildings that house biomolecular research laboratories.
 o $4.2M (including $3.9 million from an NIH CO6 grant) committed for a new vivarium devoted to research in the biomolecular sciences.

In addition, the university has committed $448,601 of ongoing funding (as of year 4 of the program) and $600,000 of one-time funding as part of our obligations to the INBRE grant. The ongoing funding will fund two faculty members, a staff member, five graduate assistantships, and a portion of the needed library resources. The one-time funding is for startup equipment, etc., for new faculty members.

To complete our preparation for the proposed program, we will need to fund the hiring of 2 additional new tenure-track faculty members, one lecturer, 10 additional graduate assistants, and assorted staff members, as well as other resources such as library materials. The resulting total ongoing commitment, as of year 4 of the program, will be $623,323; an additional $100,000 of one time funds will be needed. The source of those funds will be a reallocation over the next several years from various sources, including salary savings and expense reductions in other areas. In addition, new funding will be committed from any increases in state and tuition revenues and Enrollment Workload Adjustment funding as that funding becomes available. This is consistent with how the University has funded new graduate programs in the past. See section (3) below for additional information.

Detail of our existing commitments to the INBRE grant as well as new funds needed to fund the proposed program may be found in the table on the following page.
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>FY2013</th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Professor, Full</td>
<td>$ 98,353</td>
<td>$ 100,179</td>
<td>$ 102,042</td>
<td>$ 103,942</td>
</tr>
<tr>
<td>BioSc #2 (mol gen)</td>
<td>Professor, Assistant</td>
<td>$ 100,179</td>
<td>$ 102,042</td>
<td>$ 103,942</td>
<td>$ 103,942</td>
</tr>
<tr>
<td>Bioinformatics Coordinator (Bio Sc)</td>
<td></td>
<td>$ 44,450</td>
<td>$ 44,450</td>
<td>$ 64,041</td>
<td>$ 65,181</td>
</tr>
<tr>
<td>5 initial GradAsst</td>
<td></td>
<td>$ 120,000</td>
<td>$ 122,400</td>
<td>$ 124,848</td>
<td>$ 127,345</td>
</tr>
<tr>
<td>5 initial GradAsst Tuition/Fee Waivers</td>
<td></td>
<td>$ 42,854</td>
<td>$ 44,997</td>
<td>$ 47,247</td>
<td>$ 48,192</td>
</tr>
</tbody>
</table>

OE and Capital

| Library (part) | | $ 30,000 | $ 30,000 | $ 30,000 | $ 30,000 |

Totals:

- Grant Funded $ 98,353 $ 100,179
- College of Arts&Sci Committed $ 30,000 $ 100,000
- Central Committed to INBRE grant $ 207,304 $ 312,026 $ 440,219

New funds needed for the PhD in Biomolecular Sci

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>FY2013</th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Program Director 3 mo</td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioSc #2 (mol gen)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioSc #3 (physiol)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>Physics #1 (biophy)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioLecturer #1</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioLecturer #2 (0.3 FTE)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>0.5 FTE Admin Asst (Program Dir)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>0.5 FTE Admin Asst (Bio Sc)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>10 Graduate Teaching Asst</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>10 each Tuition/Fee Waivers</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>Saved A260 funds</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
</tbody>
</table>

OE and Capital

Miscellaneous		$ 20,000	$ 20,000	$ 20,000	$ 20,000
Library (part)		$ 15,000	$ 15,000	$ 15,000	$ 15,000
Startup fpr Physics #1		$ 100,000	$ 100,000	$ 100,000	$ 100,000

Total Required $ 379,608 $ 597,029 $ 610,726 $ 623,323 $ 100,000

New funds needed for the PhD in Biomolecular Sci

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>FY2013</th>
<th>FY2014</th>
<th>FY2015</th>
<th>FY2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Program Director 3 mo</td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioSc #2 (mol gen)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioSc #3 (physiol)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>Physics #1 (biophy)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioLecturer #1</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>BioLecturer #2 (0.3 FTE)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>0.5 FTE Admin Asst (Program Dir)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>0.5 FTE Admin Asst (Bio Sc)</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>10 Graduate Teaching Asst</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>10 each Tuition/Fee Waivers</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
<tr>
<td>Saved A260 funds</td>
<td></td>
<td>$ 32,198</td>
<td>$ 32,806</td>
<td>$ 32,513</td>
<td>$ 33,540</td>
</tr>
</tbody>
</table>

OE and Capital

Miscellaneous		$ 20,000	$ 20,000	$ 20,000	$ 20,000
Library (part)		$ 15,000	$ 15,000	$ 15,000	$ 15,000
Startup fpr Physics #1		$ 100,000	$ 100,000	$ 100,000	$ 100,000

Total Required $ 379,608 $ 597,029 $ 610,726 $ 623,323 $ 100,000
(2) If an above Maintenance of Current Operations (MCO) appropriation is required to fund the program, indicate when the institution plans to include the program in the legislative budget request.

There is not a plan to request MCO funds as part of a legislative appropriation.

(3) Describe the federal grant, other grant(s), special fee arrangements, or contract(s) to fund the program. What does the institution propose to do with the program upon termination of those funds?

Although the university did use NIH funding (BRIN and INBRE programs) to start two new faculty positions in the biomolecular sciences over the past decade, these positions are now fully funded by the university. One additional position will be funded initially by INBRE then funded by the university. After program start, grant and contract funding will be used to support the direct and indirect costs of research activities. Direct costs include summer faculty salaries, graduate research assistantships, postdoctoral appointments, usage fees for special research facilities, instrumentation, materials and supplies, communications, meeting travel, and publication costs.
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>Annual Academic Year Salary</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>Projected Student Credits</th>
<th>FTE Students (24 credits per FTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feris, K</td>
<td>Professor, Associate</td>
<td>$57,783</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Forbey, J</td>
<td>Professor, Assistant</td>
<td>$54,018</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Giddings, M</td>
<td>Res Faculty Member</td>
<td>$90,000</td>
<td>0.02</td>
<td>$1,800</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>Hampikian, G</td>
<td>Professor, Full</td>
<td>$70,596</td>
<td>0.02</td>
<td>$1,412</td>
<td>8</td>
<td>0.33</td>
</tr>
<tr>
<td>Heath, J</td>
<td>Professor, Assistant</td>
<td>$54,018</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Jorcyk, C</td>
<td>Professor, Full</td>
<td>$67,517</td>
<td>0.13</td>
<td>$8,777</td>
<td>9</td>
<td>0.38</td>
</tr>
<tr>
<td>Mitchell, K</td>
<td>Professor, Assistant</td>
<td>$60,674</td>
<td>0.17</td>
<td>$10,315</td>
<td>11</td>
<td>0.46</td>
</tr>
<tr>
<td>Oxford, J</td>
<td>Professor, Full</td>
<td>$77,050</td>
<td>0.13</td>
<td>$10,017</td>
<td>13</td>
<td>0.54</td>
</tr>
<tr>
<td>Rohn, T</td>
<td>Professor, Full</td>
<td>$64,397</td>
<td>0.03</td>
<td>$1,932</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>Serpe, M</td>
<td>Professor, Full</td>
<td>$63,399</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Tinker, J</td>
<td>Professor, Assistant</td>
<td>$54,018</td>
<td>0.02</td>
<td>$1,080</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>Wingett, D</td>
<td>Professor, Full</td>
<td>$64,335</td>
<td>0.01</td>
<td>$643</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Professor, Full</td>
<td>$75,000</td>
<td>0.17</td>
<td>$12,750</td>
<td>24</td>
<td>1.00</td>
</tr>
<tr>
<td>BioSc #2 (mol gen)</td>
<td>Professor, Assistant</td>
<td>$75,000</td>
<td>0.17</td>
<td>$12,750</td>
<td>24</td>
<td>1.00</td>
</tr>
<tr>
<td>BioSc #3 (physiol)</td>
<td>Professor, Assistant</td>
<td>$60,000</td>
<td>0.01</td>
<td>$600</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Lecturer #1</td>
<td>Lecturer</td>
<td>$36,000</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Lecturer #2</td>
<td>Lecturer</td>
<td>$36,000</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Brown, E</td>
<td>Professor, Assistant</td>
<td>$56,514</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Charlier, H</td>
<td>Professor, Associate</td>
<td>$63,711</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Cornell, K</td>
<td>Professor, Associate</td>
<td>$61,048</td>
<td>0.20</td>
<td>$12,210</td>
<td>37</td>
<td>1.54</td>
</tr>
<tr>
<td>Lee, J</td>
<td>Professor, Assistant</td>
<td>$56,308</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>LeMaster, C</td>
<td>Professor, Full</td>
<td>$80,908</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>McDougal, O</td>
<td>Professor, Associate</td>
<td>$61,048</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Nagarajan, R</td>
<td>Professor, Assistant</td>
<td>$56,015</td>
<td>0.03</td>
<td>$1,680</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>Warner, D</td>
<td>Professor, Associate</td>
<td>$61,132</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Xu, D</td>
<td>Professor, Assistant</td>
<td>$56,015</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Hanna, C</td>
<td>Professor, Full</td>
<td>$83,510</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Kim, B</td>
<td>Professor, Associate</td>
<td>$61,319</td>
<td>0.15</td>
<td>$9,198</td>
<td>9</td>
<td>0.38</td>
</tr>
<tr>
<td>Punnoose, A</td>
<td>Professor, Full</td>
<td>$75,255</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Fologea, D.</td>
<td>Professor, Assistant</td>
<td>$55,100</td>
<td>0.09</td>
<td>$4,959</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Physics #1 (biophy)</td>
<td>Professor, Assistant</td>
<td>$60,000</td>
<td>0.17</td>
<td>$10,200</td>
<td>35</td>
<td>1.46</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td>1.52</td>
<td>$100,323</td>
<td>189</td>
<td>7.88</td>
</tr>
</tbody>
</table>
Section 6.a Instructional Staff Expenditures

Year 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>Annual Academic Year Salary</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>Projected Student Credits</th>
<th>FTE Students (24 credits per FTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feris, K</td>
<td>Professor, Associate</td>
<td>$58,939</td>
<td>0.09</td>
<td>$5,305</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Forbey, J</td>
<td>Professor, Assistant</td>
<td>$55,098</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Giddings, M</td>
<td>Res Faculty Member</td>
<td>$91,800</td>
<td>0.03</td>
<td>$2,754</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Hampikian, G</td>
<td>Professor, Full</td>
<td>$72,008</td>
<td>0.07</td>
<td>$5,041</td>
<td>19</td>
<td>0.79</td>
</tr>
<tr>
<td>Heath, J</td>
<td>Professor, Assistant</td>
<td>$55,098</td>
<td>0.02</td>
<td>$1,102</td>
<td>8</td>
<td>0.33</td>
</tr>
<tr>
<td>Jorcyk, C</td>
<td>Professor, Full</td>
<td>$68,867</td>
<td>0.15</td>
<td>$10,330</td>
<td>13</td>
<td>0.54</td>
</tr>
<tr>
<td>Mitchell, K</td>
<td>Professor, Assistant</td>
<td>$61,887</td>
<td>0.12</td>
<td>$7,426</td>
<td>11</td>
<td>0.46</td>
</tr>
<tr>
<td>Oxford, J</td>
<td>Professor, Full</td>
<td>$78,591</td>
<td>0.21</td>
<td>$16,504</td>
<td>24</td>
<td>1.00</td>
</tr>
<tr>
<td>Rohn, T</td>
<td>Professor, Full</td>
<td>$65,685</td>
<td>0.17</td>
<td>$11,166</td>
<td>14</td>
<td>0.58</td>
</tr>
<tr>
<td>Serpe, M</td>
<td>Professor, Full</td>
<td>$64,667</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Tinker, J</td>
<td>Professor, Assistant</td>
<td>$55,098</td>
<td>0.21</td>
<td>$11,571</td>
<td>29</td>
<td>1.21</td>
</tr>
<tr>
<td>Wingett, D</td>
<td>Professor, Full</td>
<td>$65,622</td>
<td>0.12</td>
<td>$7,875</td>
<td>11</td>
<td>0.46</td>
</tr>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Professor, Full</td>
<td>$76,500</td>
<td>0.24</td>
<td>$18,360</td>
<td>36</td>
<td>1.50</td>
</tr>
<tr>
<td>BioSc #2 (mol gen)</td>
<td>Professor, Assistant</td>
<td>$76,500</td>
<td>0.19</td>
<td>$14,535</td>
<td>27</td>
<td>1.13</td>
</tr>
<tr>
<td>BioSc #3 (physiol)</td>
<td>Professor, Assistant</td>
<td>$61,200</td>
<td>0.20</td>
<td>$12,240</td>
<td>13</td>
<td>0.54</td>
</tr>
<tr>
<td>Lecturer #1</td>
<td>Lecturer</td>
<td>$36,720</td>
<td>0.01</td>
<td>$367</td>
<td>1</td>
<td>0.04</td>
</tr>
<tr>
<td>Lecturer #2</td>
<td>Lecturer</td>
<td>$36,720</td>
<td>0.06</td>
<td>$2,203</td>
<td>12</td>
<td>0.50</td>
</tr>
<tr>
<td>Brown, E</td>
<td>Professor, Assistant</td>
<td>$57,644</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Charlier, H</td>
<td>Professor, Associate</td>
<td>$64,985</td>
<td>0.03</td>
<td>$1,950</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Cornell, K</td>
<td>Professor, Associate</td>
<td>$62,269</td>
<td>0.25</td>
<td>$15,567</td>
<td>43</td>
<td>1.79</td>
</tr>
<tr>
<td>Lee, J</td>
<td>Professor, Assistant</td>
<td>$57,434</td>
<td>0.09</td>
<td>$5,169</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>LeMaster, C</td>
<td>Professor, Full</td>
<td>$82,526</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>McDougal, O</td>
<td>Professor, Associate</td>
<td>$62,269</td>
<td>0.07</td>
<td>$4,359</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Nagarajan, R</td>
<td>Professor, Assistant</td>
<td>$57,135</td>
<td>0.09</td>
<td>$5,142</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Warner, D</td>
<td>Professor, Associate</td>
<td>$62,355</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Xu, D</td>
<td>Professor, Assistant</td>
<td>$57,135</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Hanna, C</td>
<td>Professor, Full</td>
<td>$85,180</td>
<td>0.09</td>
<td>$7,666</td>
<td>9</td>
<td>0.38</td>
</tr>
<tr>
<td>Kim, B</td>
<td>Professor, Associate</td>
<td>$62,545</td>
<td>0.18</td>
<td>$11,258</td>
<td>13</td>
<td>0.54</td>
</tr>
<tr>
<td>Punnoose, A</td>
<td>Professor, Full</td>
<td>$76,760</td>
<td>0.07</td>
<td>$5,373</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Fologea, D.</td>
<td>Professor, Assistant</td>
<td>$56,202</td>
<td>0.17</td>
<td>$9,554</td>
<td>15</td>
<td>0.63</td>
</tr>
<tr>
<td>Physics #1 (biophy)</td>
<td>Professor, Assistant</td>
<td>$61,200</td>
<td>0.32</td>
<td>$19,584</td>
<td>43</td>
<td>1.79</td>
</tr>
</tbody>
</table>

TOTALS: 3.25 $212,401 380 15.83
Section 6.a Instructional Staff Expenditures

Year 3

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>Annual Academic Year Salary</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>Projected Student Credits</th>
<th>FTE Students (24 credits per FTE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feris, K</td>
<td>Professor, Associate</td>
<td>$60,117</td>
<td>0.09</td>
<td>$5,411</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Forbey, J</td>
<td>Professor, Assistant</td>
<td>$56,200</td>
<td>0.09</td>
<td>$5,058</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Giddings, M</td>
<td>Res Faculty Member</td>
<td>$93,636</td>
<td>0.05</td>
<td>$4,682</td>
<td>15</td>
<td>0.63</td>
</tr>
<tr>
<td>Hampikian, G</td>
<td>Professor, Full</td>
<td>$73,448</td>
<td>0.17</td>
<td>$12,486</td>
<td>38</td>
<td>1.58</td>
</tr>
<tr>
<td>Heath, J</td>
<td>Professor, Assistant</td>
<td>$56,200</td>
<td>0.01</td>
<td>$562</td>
<td>4</td>
<td>0.17</td>
</tr>
<tr>
<td>Jorcyk, C</td>
<td>Professor, Full</td>
<td>$70,245</td>
<td>0.32</td>
<td>$22,478</td>
<td>40</td>
<td>1.67</td>
</tr>
<tr>
<td>Mitchell, K</td>
<td>Professor, Assistant</td>
<td>$63,125</td>
<td>0.35</td>
<td>$22,094</td>
<td>34</td>
<td>1.42</td>
</tr>
<tr>
<td>Oxford, J</td>
<td>Professor, Full</td>
<td>$80,163</td>
<td>0.28</td>
<td>$22,446</td>
<td>48</td>
<td>2.00</td>
</tr>
<tr>
<td>Rohn, T</td>
<td>Professor, Full</td>
<td>$66,999</td>
<td>0.22</td>
<td>$14,740</td>
<td>29</td>
<td>1.21</td>
</tr>
<tr>
<td>Serpe, M</td>
<td>Professor, Full</td>
<td>$65,960</td>
<td>0.09</td>
<td>$5,936</td>
<td>15</td>
<td>0.63</td>
</tr>
<tr>
<td>Tinker, J</td>
<td>Professor, Assistant</td>
<td>$56,200</td>
<td>0.19</td>
<td>$10,678</td>
<td>20</td>
<td>0.83</td>
</tr>
<tr>
<td>Wingett, D</td>
<td>Professor, Full</td>
<td>$66,934</td>
<td>0.17</td>
<td>$11,379</td>
<td>23</td>
<td>0.96</td>
</tr>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Professor, Full</td>
<td>$78,030</td>
<td>0.36</td>
<td>$28,091</td>
<td>65</td>
<td>2.71</td>
</tr>
<tr>
<td>BioSc #2 (mol gen)</td>
<td>Professor, Assistant</td>
<td>$78,030</td>
<td>0.24</td>
<td>$18,727</td>
<td>51</td>
<td>2.13</td>
</tr>
<tr>
<td>BioSc #3 (physiol)</td>
<td>Professor, Assistant</td>
<td>$62,424</td>
<td>0.30</td>
<td>$18,727</td>
<td>41</td>
<td>1.71</td>
</tr>
<tr>
<td>Lecturer #1</td>
<td>Lecturer</td>
<td>$37,454</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Lecturer #2</td>
<td>Lecturer</td>
<td>$37,454</td>
<td>0.10</td>
<td>$3,745</td>
<td>18</td>
<td>0.75</td>
</tr>
<tr>
<td>Brown, E</td>
<td>Professor, Assistant</td>
<td>$58,797</td>
<td>0.09</td>
<td>$5,292</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Charlier, H</td>
<td>Professor, Associate</td>
<td>$66,285</td>
<td>0.09</td>
<td>$5,966</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Cornell, K</td>
<td>Professor, Associate</td>
<td>$63,514</td>
<td>0.32</td>
<td>$20,324</td>
<td>66</td>
<td>2.75</td>
</tr>
<tr>
<td>Lee, J</td>
<td>Professor, Assistant</td>
<td>$58,583</td>
<td>0.09</td>
<td>$5,272</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>LeMaster, C</td>
<td>Professor, Full</td>
<td>$84,177</td>
<td>0.16</td>
<td>$10,162</td>
<td>14</td>
<td>0.58</td>
</tr>
<tr>
<td>McDougal, O</td>
<td>Professor, Associate</td>
<td>$63,514</td>
<td>0.16</td>
<td>$10,162</td>
<td>14</td>
<td>0.58</td>
</tr>
<tr>
<td>Nagarajan, R</td>
<td>Professor, Assistant</td>
<td>$58,278</td>
<td>0.15</td>
<td>$8,742</td>
<td>14</td>
<td>0.58</td>
</tr>
<tr>
<td>Warner, D</td>
<td>Professor, Associate</td>
<td>$63,602</td>
<td>0.05</td>
<td>$3,180</td>
<td>3</td>
<td>0.13</td>
</tr>
<tr>
<td>Xu, D</td>
<td>Professor, Assistant</td>
<td>$58,278</td>
<td>0.07</td>
<td>$4,079</td>
<td>6</td>
<td>0.25</td>
</tr>
<tr>
<td>Hanna, C</td>
<td>Professor, Full</td>
<td>$86,884</td>
<td>0.00</td>
<td>$0</td>
<td>0</td>
<td>0.00</td>
</tr>
<tr>
<td>Kim, B</td>
<td>Professor, Associate</td>
<td>$63,796</td>
<td>0.21</td>
<td>$13,397</td>
<td>25</td>
<td>1.04</td>
</tr>
<tr>
<td>Punnoose, A</td>
<td>Professor, Full</td>
<td>$78,295</td>
<td>0.09</td>
<td>$7,047</td>
<td>5</td>
<td>0.21</td>
</tr>
<tr>
<td>Fologea, D.</td>
<td>Professor, Assistant</td>
<td>$57,326</td>
<td>0.33</td>
<td>$18,918</td>
<td>37</td>
<td>1.54</td>
</tr>
<tr>
<td>Physics #1 (biophy)</td>
<td>Professor, Assistant</td>
<td>$62,424</td>
<td>0.36</td>
<td>$22,473</td>
<td>69</td>
<td>2.88</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.04</td>
</tr>
</tbody>
</table>
Section 6a. Research and Research Support Personnel Expenditures

Year 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Annual Rate (12-month)</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond, L</td>
<td>Bioinformatics Coord (Bio Sc)</td>
<td>$45,000</td>
<td>0.5</td>
<td>$22,500</td>
<td>50%</td>
</tr>
<tr>
<td>Brown, R</td>
<td>Res Technician/Mgr (Bio Sc)</td>
<td>$60,000</td>
<td>0.25</td>
<td>$15,000</td>
<td>25%</td>
</tr>
<tr>
<td>Rasmussen, J</td>
<td>Res Associate (Bio Sc)</td>
<td>$41,510</td>
<td>0.25</td>
<td>$10,378</td>
<td>25%</td>
</tr>
<tr>
<td>Chingas, G</td>
<td>Research Instr Mgr (Ch&Bioch)</td>
<td>$70,909</td>
<td>0.25</td>
<td>$17,727</td>
<td>25%</td>
</tr>
<tr>
<td>Thurber, A</td>
<td>Lab Mgr (Physics)</td>
<td>$57,000</td>
<td>0.25</td>
<td>$14,250</td>
<td>25%</td>
</tr>
<tr>
<td>Alileche, A.</td>
<td>Asst Res Prof (Bio Sc)</td>
<td>$54,000</td>
<td>0.5</td>
<td>$27,000</td>
<td>50%</td>
</tr>
<tr>
<td>Habig, J.</td>
<td>Res Asst Prof (Chem Bioch)</td>
<td>$62,000</td>
<td>0.5</td>
<td>$31,000</td>
<td>50%</td>
</tr>
<tr>
<td>Hiremuth, M.</td>
<td>Res Asst Prof (Bio Sc)</td>
<td>$44,000</td>
<td>0.5</td>
<td>$22,000</td>
<td>50%</td>
</tr>
<tr>
<td>Bolin, C.</td>
<td>Postdoc Res Assoc (Bio Sc)</td>
<td>$40,000</td>
<td>0.5</td>
<td>$20,000</td>
<td>50%</td>
</tr>
<tr>
<td>Moselhy, J.</td>
<td>Postdoc Res Assoc (Bio Sc)</td>
<td>$40,000</td>
<td>0.5</td>
<td>$20,000</td>
<td>50%</td>
</tr>
<tr>
<td>Goswami, J.</td>
<td>Res Assoc (Bio Sci)</td>
<td>$26,000</td>
<td>0.5</td>
<td>$13,000</td>
<td>50%</td>
</tr>
<tr>
<td>Bullock, W.</td>
<td>Res Assoc (Chem Bioch)</td>
<td>$42,000</td>
<td>0.5</td>
<td>$21,000</td>
<td>50%</td>
</tr>
<tr>
<td>Yan, J.</td>
<td>Res Asst (Chem Bioch)</td>
<td>$35,000</td>
<td>0.5</td>
<td>$17,500</td>
<td>50%</td>
</tr>
<tr>
<td>Davis, B.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,000</td>
<td>0.5</td>
<td>$15,000</td>
<td>50%</td>
</tr>
<tr>
<td>de Oliveira, D.</td>
<td>Res Asst (Bio Sc)</td>
<td>$32,000</td>
<td>0.5</td>
<td>$16,000</td>
<td>50%</td>
</tr>
<tr>
<td>Eidemiller, S.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,000</td>
<td>0.5</td>
<td>$15,000</td>
<td>50%</td>
</tr>
<tr>
<td>Martin, B.</td>
<td>Res Asst (Bio Sc)</td>
<td>$25,000</td>
<td>0.5</td>
<td>$12,500</td>
<td>50%</td>
</tr>
<tr>
<td>Ryan, R.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,000</td>
<td>0.5</td>
<td>$15,000</td>
<td>50%</td>
</tr>
<tr>
<td>Hamilton, H.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,000</td>
<td>0.5</td>
<td>$15,000</td>
<td>50%</td>
</tr>
<tr>
<td>Zou, Y.</td>
<td>Res Asst (Bio Sc)</td>
<td>$31,000</td>
<td>0.5</td>
<td>$15,500</td>
<td>50%</td>
</tr>
</tbody>
</table>

Year 1 Totals: 9.0 $355,355

Year 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Annual Rate (12-month)</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond, L</td>
<td>Bioinformatics Coord (Bio Sc)</td>
<td>$45,900</td>
<td>0.5</td>
<td>$22,950</td>
<td>50.0%</td>
</tr>
<tr>
<td>Brown, R</td>
<td>Res Technician/Mgr (Bio Sc)</td>
<td>$61,200</td>
<td>0.25</td>
<td>$15,300</td>
<td>25.0%</td>
</tr>
<tr>
<td>Rasmussen, J</td>
<td>Res Associate (Bio Sc)</td>
<td>$42,340</td>
<td>0.25</td>
<td>$10,585</td>
<td>25.0%</td>
</tr>
<tr>
<td>Chingas, G</td>
<td>Research Instr Mgr (Ch&Bioch)</td>
<td>$72,327</td>
<td>0.25</td>
<td>$18,082</td>
<td>25.0%</td>
</tr>
<tr>
<td>Thurber, A</td>
<td>Lab Mgr (Physics)</td>
<td>$58,140</td>
<td>0.25</td>
<td>$14,535</td>
<td>25.0%</td>
</tr>
<tr>
<td>Alileche, A.</td>
<td>Asst Res Prof (Bio Sc)</td>
<td>$55,080</td>
<td>0.5</td>
<td>$27,540</td>
<td>50%</td>
</tr>
<tr>
<td>Habig, J.</td>
<td>Res Asst Prof (Chem Bioch)</td>
<td>$63,240</td>
<td>0.5</td>
<td>$31,620</td>
<td>50%</td>
</tr>
<tr>
<td>Hiremuth, M.</td>
<td>Res Asst Prof (Bio Sc)</td>
<td>$44,880</td>
<td>0.5</td>
<td>$22,440</td>
<td>50%</td>
</tr>
<tr>
<td>Bolin, C.</td>
<td>Postdoc Res Assoc (Bio Sc)</td>
<td>$40,800</td>
<td>0.5</td>
<td>$20,400</td>
<td>50%</td>
</tr>
<tr>
<td>Moselhy, J.</td>
<td>Postdoc Res Assoc (Bio Sc)</td>
<td>$40,800</td>
<td>0.5</td>
<td>$20,400</td>
<td>50%</td>
</tr>
<tr>
<td>Goswami, J.</td>
<td>Res Assoc (Bio Sci)</td>
<td>$26,520</td>
<td>0.5</td>
<td>$13,260</td>
<td>50%</td>
</tr>
<tr>
<td>Bullock, W.</td>
<td>Res Assoc (Chem Bioch)</td>
<td>$42,840</td>
<td>0.5</td>
<td>$21,420</td>
<td>50%</td>
</tr>
<tr>
<td>Yan, J.</td>
<td>Res Asst (Chem Bioch)</td>
<td>$35,700</td>
<td>0.5</td>
<td>$17,850</td>
<td>50%</td>
</tr>
<tr>
<td>Davis, B.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,600</td>
<td>0.5</td>
<td>$15,300</td>
<td>50%</td>
</tr>
<tr>
<td>de Oliveira, D.</td>
<td>Res Asst (Bio Sc)</td>
<td>$32,640</td>
<td>0.5</td>
<td>$16,320</td>
<td>50%</td>
</tr>
<tr>
<td>Eidemiller, S.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,600</td>
<td>0.5</td>
<td>$15,300</td>
<td>50%</td>
</tr>
<tr>
<td>Martin, B.</td>
<td>Res Asst (Bio Sc)</td>
<td>$25,500</td>
<td>0.5</td>
<td>$12,750</td>
<td>50%</td>
</tr>
<tr>
<td>Ryan, R.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,600</td>
<td>0.5</td>
<td>$15,300</td>
<td>50%</td>
</tr>
<tr>
<td>Hamilton, H.</td>
<td>Res Asst (Bio Sc)</td>
<td>$30,600</td>
<td>0.5</td>
<td>$15,300</td>
<td>50%</td>
</tr>
<tr>
<td>Zou, Y.</td>
<td>Res Asst (Bio Sc)</td>
<td>$31,620</td>
<td>0.5</td>
<td>$15,810</td>
<td>50%</td>
</tr>
</tbody>
</table>

Year 2 Totals: 9.0 $362,462
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Salary</th>
<th>Percent</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond, L</td>
<td>Bioinformatics Coord (Bio Sc)</td>
<td>$46,818</td>
<td>0.50</td>
<td>$23,409</td>
</tr>
<tr>
<td>Brown, R</td>
<td>Res Technician/Mgr (Bio Sc)</td>
<td>$62,424</td>
<td>0.25</td>
<td>$15,606</td>
</tr>
<tr>
<td>Rasmussen, J</td>
<td>Res Associate (Bio Sc)</td>
<td>$43,187</td>
<td>0.25</td>
<td>$10,797</td>
</tr>
<tr>
<td>Chingas, G</td>
<td>Research Instr Mgr (Ch&Bioch)</td>
<td>$73,774</td>
<td>0.25</td>
<td>$18,443</td>
</tr>
<tr>
<td>Thurber, A</td>
<td>Lab Mgr (Physics)</td>
<td>$59,303</td>
<td>0.25</td>
<td>$14,826</td>
</tr>
<tr>
<td>Alileche, A.</td>
<td>Asst Res Prof (Bio Sc)</td>
<td>$56,182</td>
<td>0.5</td>
<td>$28,091</td>
</tr>
<tr>
<td>Habig, J.</td>
<td>Res Asst Prof (Chem Bioch)</td>
<td>$64,505</td>
<td>0.5</td>
<td>$32,252</td>
</tr>
<tr>
<td>Hiremath, M.</td>
<td>Res Asst Prof (Bio Sc)</td>
<td>$45,778</td>
<td>0.5</td>
<td>$22,889</td>
</tr>
<tr>
<td>Bolin, C.</td>
<td>Postdoc Res Assoc (Bio Sc)</td>
<td>$41,616</td>
<td>0.5</td>
<td>$20,808</td>
</tr>
<tr>
<td>Moselhy, J.</td>
<td>Postdoc Res Assoc (Bio Sc)</td>
<td>$41,616</td>
<td>0.5</td>
<td>$20,808</td>
</tr>
<tr>
<td>Goswami, J.</td>
<td>Res Assoc (Bio Sci)</td>
<td>$27,050</td>
<td>0.5</td>
<td>$13,525</td>
</tr>
<tr>
<td>Bullock, W.</td>
<td>Res Assoc (Chem Bioch)</td>
<td>$43,697</td>
<td>0.5</td>
<td>$21,848</td>
</tr>
<tr>
<td>Yan, J.</td>
<td>Res Asst (Chem Bioch)</td>
<td>$36,414</td>
<td>0.5</td>
<td>$18,207</td>
</tr>
<tr>
<td>Davis, B.</td>
<td>Res Asst (Bio Sc)</td>
<td>$31,212</td>
<td>0.5</td>
<td>$15,606</td>
</tr>
<tr>
<td>de Oliveira, D.</td>
<td>Res Asst (Bio Sc)</td>
<td>$33,293</td>
<td>0.5</td>
<td>$16,646</td>
</tr>
<tr>
<td>Eidemiller, S.</td>
<td>Res Asst (Bio Sc)</td>
<td>$31,212</td>
<td>0.5</td>
<td>$15,606</td>
</tr>
<tr>
<td>Martin, B.</td>
<td>Res Asst (Bio Sc)</td>
<td>$26,010</td>
<td>0.5</td>
<td>$13,005</td>
</tr>
<tr>
<td>Ryan, R.</td>
<td>Res Asst (Bio Sc)</td>
<td>$31,212</td>
<td>0.5</td>
<td>$15,606</td>
</tr>
<tr>
<td>Hamilton, H.</td>
<td>Res Asst (Bio Sc)</td>
<td>$31,212</td>
<td>0.5</td>
<td>$15,606</td>
</tr>
<tr>
<td>Zou, Y.</td>
<td>Res Asst (Bio Sc)</td>
<td>$32,252</td>
<td>0.5</td>
<td>$16,126</td>
</tr>
</tbody>
</table>

Year 3 Totals | 9.0 | **$369,711**
Section 6a. Administrative Support Personnel Expenditures

Year 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Annual Rate (12-month)</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redshaw, E</td>
<td>Bus Mgr/Grant Acct Officer(COAS)</td>
<td>$58,490</td>
<td>0.10</td>
<td>$5,849</td>
<td>10.0%</td>
</tr>
<tr>
<td>Jibben, B</td>
<td>Grant Mgr/Writer Assmnt Coord (Bio Sc)</td>
<td>$46,876</td>
<td>0.25</td>
<td>$11,719</td>
<td>25.0%</td>
</tr>
<tr>
<td>Korol, M</td>
<td>Grants Accountant (Bio Sc)</td>
<td>$41,247</td>
<td>0.25</td>
<td>$10,312</td>
<td>25.0%</td>
</tr>
<tr>
<td>Kator, G</td>
<td>Grants Accountant (Ch&Bioch)</td>
<td>$40,000</td>
<td>0.25</td>
<td>$10,000</td>
<td>25.0%</td>
</tr>
<tr>
<td>TBD</td>
<td>Admin Asst (Program Dir)</td>
<td>$28,900</td>
<td>0.50</td>
<td>$14,450</td>
<td>50.0%</td>
</tr>
<tr>
<td>Gee, E</td>
<td>Management Asst (Bio Sc)</td>
<td>$35,651</td>
<td>0.10</td>
<td>$3,565</td>
<td>10.0%</td>
</tr>
<tr>
<td>TBD</td>
<td>Admin Asst (Bio Sc)</td>
<td>$28,900</td>
<td>0.50</td>
<td>$14,450</td>
<td>50.0%</td>
</tr>
<tr>
<td>Harryman, D</td>
<td>Admin Asst (Ch&Bioch)</td>
<td>$27,331</td>
<td>0.10</td>
<td>$2,733</td>
<td>10.0%</td>
</tr>
<tr>
<td>Moss, B</td>
<td>Admin Asst (Physics)</td>
<td>$26,853</td>
<td>0.10</td>
<td>$2,685</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Year 1 Totals
2.15
$75,763

Year 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Annual Rate (12-month)</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redshaw, E</td>
<td>Bus Mgr/Grant Acct Officer(COAS)</td>
<td>$59,660</td>
<td>0.10</td>
<td>$5,966</td>
<td>10.0%</td>
</tr>
<tr>
<td>Jibben, B</td>
<td>Grant Mgr/Writer Assmnt Coord (Bio Sc)</td>
<td>$47,814</td>
<td>0.25</td>
<td>$11,953</td>
<td>25.0%</td>
</tr>
<tr>
<td>Korol, M</td>
<td>Grants Accountant (Bio Sc)</td>
<td>$42,072</td>
<td>0.25</td>
<td>$10,518</td>
<td>25.0%</td>
</tr>
<tr>
<td>Kator, G</td>
<td>Grants Accountant (Ch&Bioch)</td>
<td>$40,800</td>
<td>0.25</td>
<td>$10,200</td>
<td>25.0%</td>
</tr>
<tr>
<td>TBD</td>
<td>Admin Asst (Program Dir)</td>
<td>$29,478</td>
<td>0.50</td>
<td>$14,739</td>
<td>50.0%</td>
</tr>
<tr>
<td>Gee, E</td>
<td>Management Asst (Bio Sc)</td>
<td>$36,364</td>
<td>0.10</td>
<td>$3,636</td>
<td>10.0%</td>
</tr>
<tr>
<td>TBD</td>
<td>Admin Asst (Bio Sc)</td>
<td>$29,478</td>
<td>0.50</td>
<td>$14,739</td>
<td>50.0%</td>
</tr>
<tr>
<td>Harryman, D</td>
<td>Admin Asst (Ch&Bioch)</td>
<td>$27,878</td>
<td>0.10</td>
<td>$2,788</td>
<td>10.0%</td>
</tr>
<tr>
<td>Moss, B</td>
<td>Admin Asst (Physics)</td>
<td>$27,390</td>
<td>0.10</td>
<td>$2,739</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Year 2 Totals
2.15
$77,279

Year 3

<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>Annual Rate (12-month)</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redshaw, E</td>
<td>Bus Mgr/Grant Acct Officer(COAS)</td>
<td>$60,853</td>
<td>0.10</td>
<td>$6,085</td>
<td>10.0%</td>
</tr>
<tr>
<td>Jibben, B</td>
<td>Grant Mgr/Writer Assmnt Coord (Bio Sc)</td>
<td>$48,770</td>
<td>0.25</td>
<td>$12,192</td>
<td>25.0%</td>
</tr>
<tr>
<td>Korol, M</td>
<td>Grants Accountant (Bio Sc)</td>
<td>$42,913</td>
<td>0.25</td>
<td>$10,728</td>
<td>25.0%</td>
</tr>
<tr>
<td>Kator, G</td>
<td>Grants Accountant (Ch&Bioch)</td>
<td>$41,616</td>
<td>0.25</td>
<td>$10,404</td>
<td>25.0%</td>
</tr>
<tr>
<td>TBD</td>
<td>Admin Asst (Program Dir)</td>
<td>$30,068</td>
<td>0.50</td>
<td>$15,034</td>
<td>50.0%</td>
</tr>
<tr>
<td>Gee, E</td>
<td>Management Asst (Bio Sc)</td>
<td>$37,091</td>
<td>0.10</td>
<td>$3,709</td>
<td>10.0%</td>
</tr>
<tr>
<td>TBD</td>
<td>Admin Asst (Bio Sc)</td>
<td>$30,068</td>
<td>0.50</td>
<td>$15,034</td>
<td>50.0%</td>
</tr>
<tr>
<td>Harryman, D</td>
<td>Admin Asst (Ch&Bioch)</td>
<td>$28,435</td>
<td>0.10</td>
<td>$2,844</td>
<td>10.0%</td>
</tr>
<tr>
<td>Moss, B</td>
<td>Admin Asst (Physics)</td>
<td>$27,938</td>
<td>0.10</td>
<td>$2,794</td>
<td>10.0%</td>
</tr>
</tbody>
</table>

Year 3 Totals
2.15
$78,824
Section 6.b Administrative Expenditures

Year 1

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>Annual Contract Salary</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Program Director</td>
<td>$100,000</td>
<td>0.25</td>
<td>$25,000</td>
<td>25.0%</td>
</tr>
<tr>
<td>Wingett, D</td>
<td>Dept Chair (Bio Sc)</td>
<td>$85,780</td>
<td>0.10</td>
<td>$8,578</td>
<td>10.0%</td>
</tr>
<tr>
<td>LeMaster, C</td>
<td>Dept Chair (Ch&Bioch)</td>
<td>$89,898</td>
<td>0.05</td>
<td>$4,495</td>
<td>5.0%</td>
</tr>
<tr>
<td>Hanna, C</td>
<td>Dept Chair (Physics)</td>
<td>$92,789</td>
<td>0.05</td>
<td>$4,639</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Year 1 Subtotals: 0.45 $42,712 45.0%

Year 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>Annual Contract Salary</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Program Director</td>
<td>$102,000</td>
<td>0.25</td>
<td>$25,500</td>
<td>25.0%</td>
</tr>
<tr>
<td>Wingett, D</td>
<td>Dept Chair (Bio Sc)</td>
<td>$87,496</td>
<td>0.10</td>
<td>$8,750</td>
<td>10.0%</td>
</tr>
<tr>
<td>LeMaster, C</td>
<td>Dept Chair (Ch&Bioch)</td>
<td>$91,696</td>
<td>0.05</td>
<td>$4,585</td>
<td>5.0%</td>
</tr>
<tr>
<td>Hanna, C</td>
<td>Dept Chair (Physics)</td>
<td>$94,645</td>
<td>0.05</td>
<td>$4,732</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Year 2 Subtotals: 0.45 $43,567 45.0%

Year 3

<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Rank</th>
<th>Annual Contract Salary</th>
<th>FTE Assignment to This Program</th>
<th>Program Salary</th>
<th>PerCent of Salary to Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>BioSc #1 (cell bio)</td>
<td>Program Director</td>
<td>$104,040</td>
<td>0.25</td>
<td>$26,010</td>
<td>25.0%</td>
</tr>
<tr>
<td>Wingett, D</td>
<td>Dept Chair (Bio Sc)</td>
<td>$89,246</td>
<td>0.10</td>
<td>$8,925</td>
<td>10.0%</td>
</tr>
<tr>
<td>LeMaster, C</td>
<td>Dept Chair (Ch&Bioch)</td>
<td>$93,530</td>
<td>0.05</td>
<td>$4,676</td>
<td>5.0%</td>
</tr>
<tr>
<td>Hanna, C</td>
<td>Dept Chair (Physics)</td>
<td>$96,538</td>
<td>0.05</td>
<td>$4,827</td>
<td>5.0%</td>
</tr>
</tbody>
</table>

Year 3 Subtotals: 0.45 $44,438 45.0%
APPENDIX A1:

Doctor of Philosophy in Biomolecular Sciences
Boise State University
External Program Review Report
BOISE STATE UNIVERSITY
SITE VISIT REPORT

Reviewing the proposal for

Doctor of Philosophy (PhD) in Biomolecular Sciences

College of Arts and Sciences
Departments of Biological Sciences, Chemistry & Biochemistry,
and Physics

Judith Van Houten, University of Vermont
Sebastian Wachsmann-Hogiu, University of California, Davis
Lee Weber, University of Nevada, Reno

15 September 2011
A. Executive summary

The review team was extremely impressed with the quality of research and graduate education and the remarkable level of extramural funding of the faculty engaged in biomolecular research whom we met at Boise State University. Most remarkable is that these achievements were accomplished with only a MSc program. A new level of research accomplishments can be reached with the implementation of an interdisciplinary PhD graduate program. It will foster the kind of collaborative research that is favored by federal and other agencies and produce uniquely trained students to satisfy the needs of a growing biotech and medical community in Idaho.

The administrative and community support for this program is very evident. It will build upon the INBRE investments in the state to enhance the network of investigators and institutions. This proposed program does not duplicate programs elsewhere in the state and will present opportunities for investigators in the entire state system to participate in this collaborative, interdisciplinary research with PhD students.

Our recommendation is that this program be implemented immediately.

B. Review Process

Drs. Lee Weber (Emeritus Faculty member University of Nevada, Reno), Sebastian Wachsmann-Hogiu (Facility Director of the NSF Science and Technology Center and Associate Professor of Pathology at UC Davis), and Judith Van Houten (University Distinguished Professor at the University of Vermont and Director of Vermont INBRE) met on September 14 and 15, 2011 on the Boise State University Campus to review the proposed PhD Program in Biomolecular Sciences. This team was provided with the INBRE proposal and external evaluation report of INBRE, 2008 Memorandum to Dr. Jack Pelton, Graduate College Dean, about the Organizational Structure for the PhD in Biomolecular Sciences and the 2011 proposal to the Idaho State Board of Education.

On September 14, the team met with administrators (Dr. Tony Roark (Interim Dean of the College of Arts and Sciences), Dr. Martin Schimpf (the Provost and VP for Academic Affairs), Dr. Carolyn Bohach (the PI of the Idaho INBRE grant), Dr. Jack Pelton (Dean of the Graduate College), Dr. Mark Rudin (VP for Research), Dr. Marilyn Moody (Dean University Library), (Vice President for Finance), Dr. James Munger (Vice Provost for Academic Planning), Chairs of Biology, Chemistry and Physics Departments, Dr. C. Daniels and Dr. Mark Thomas of ISU (by phone), 6 faculty, and 11 graduate students. The team also met with Michael Hill (Boise Technology), Steve Lackie (Sapidyne), Theodore Walters (St. Luke’s Mountain States Tumor and Medical Research Institute), Christopher Ball (Idaho Department of Health and Welfare). See full agenda attached.

The review team toured facilities and faculty laboratories: four in Chemistry, five in Biology and two in Physics.
On September 15, the team composed its report and made a presentation to Drs. Munger, Pelton, Roark, Schimpf, Wingett, Hanna and LeMaster.

C. Readiness

Boise State University is a rapidly growing university serving a large metropolitan area of more than half million people. The strategic location of the University in the Treasure Valley with a VA and other diagnosis and treatment centers, as well as a high number of small and large businesses will most likely support further developments within individual schools and colleges.

The College of Arts and Sciences, through INBRE and other funding mechanisms, has made significant strategic investments over the last 8 years towards a full PhD program in the field of biomolecular sciences. This field has seen major advances nationally and internationally as it has the potential to help understand basic mechanisms of disease, diagnose disease, and provide treatments. Biomolecular science, as it encompasses several disciplines such as biology, chemistry, physics, and engineering, requires a unique interdisciplinary approach that can be effective only in settings where a collaborative environment is created, and faculty from different departments have the possibility to interact and work together on a daily basis. The establishment of collaborative research networks is the goal of the NIH-funded INBRE program.

During our visit to BSU, we particularly looked into various aspects of the environment within the College of Arts and Sciences, to evaluate their readiness for a PhD program in the field of biomolecular sciences.

1. Facilities. Over the past 8 years BSU has acquired a large number of state-of-the-art instruments for research in this field. Basic analytical instruments as well as dedicated instruments are available to perform the proposed fundamental and applied research, and faculty members seem to have adequate lab space for their work. A new vivarium to be built with funding from the NIH will further add value to the program, as it will allow for time-sensitive research to be performed directly at the University. Overall, facilities are comparable with those at research-intensive, PhD-granting institutions and we think that they are suitable for the proposed PhD program.

2. Faculty. We would like to congratulate the chairs of the three departments participating in this program for their leadership and hard work in bringing together faculty from their departments and significantly contributing to the advancement of this program.

We were highly impressed by the quality and enthusiasm of the faculty. We were amazed that they are able to perform nationally competitive research with only masters degree students.
Participating faculty are already engaged in research projects that are related to the proposed program, and received significant extramural funding as detailed in the proposal. They also currently offer a large number of courses that are specific to the program and could easily be incorporated into the new curriculum. One major hurdle in implementing such interdisciplinary programs is bringing the faculty from different departments to work together. From our discussions with the faculty it seemed very obvious that they are already working together on interdisciplinary projects. In addition, they actively collaborate with faculty in other departments such as material sciences, kinesiology, as well as VA medical center and other medical programs in the region. There are also active collaborations with faculty at the other two Idaho Universities.

Overall, we think that the faculty are well prepared and already performing research and teaching comparable to national research intensive institutions. However, to take their research to the next level of competitiveness, they need a strong PhD program.

3. Administrative support. BSU administration appears to be as enthusiastic about this program as the faculty and students. Over the past 8 years, they have lived up to their commitment to the INBRE program to make strategic faculty hires in interdisciplinary areas. This was specifically preparatory to the development of the PhD program. They have also been supportive for graduate stipends and technical support. The chairs of the participating department are also fully supportive to this program.

4. Community support. There seems to be very strong community support, as evidenced by letters of support and our direct conversations. Michael Hill (Boise Technology), Steve Lackie (Sapidyne), Theodore Walters (St. Luke’s Mountain States Tumor and Medical Research Institute), Christopher Ball (Idaho Department of Health and Welfare) reiterated their support for an interdisciplinary PhD program in the area that would satisfy their needs for highly trained personnel.

D. Recommendations

The review team recommends that the PhD program be implemented as soon as possible. All of the component parts, faculty, facilities and technical assistance are in place. There is high demand for the program from the current MS students, who will contribute to a successful beginning for the program because they are well trained and understand collaborative research. The majority of graduate students interviewed by the review team showed interest in a PhD program and almost all of them expressed the desire to do their research at BSU if at all possible.

The review team recommends that the following be implemented as the new program evolves in its early years:

1. Equal co-advisors from different disciplines relevant to the each student’s research should be approved by the Steering Committee.
2. The program should develop a student-centric approach and trust in the student and co-advisors. This allows the curriculum requirements beyond the three required core courses to be left to the co-advisors and student, who together will develop a program of courses that are designed to prepare the student for truly interdisciplinary research.

The “track” approach to the courses beyond the core should be abandoned and replaced with selection by the advisors with the students, perhaps with approval of the Steering Committee. Courses from outside the College of Arts and Sciences will undoubtedly be needed for many of the students’ training.

3. The richness of the pool of potential advisors for the program was not apparent from the formal proposal. However, the review team’s interviews with faculty revealed that there are many interdisciplinary projects in the Biology, Chemistry and Physics Departments connecting faculty from these departments to others across the campus. The mathematicians, engineers, kinesiologists and others who are key collaborators with the program faculty listed in the proposal should be recognized as “affiliate” faculty. The program should be opened up to these faculty and others across the campus, the VA and other health care entities, and other campuses, who can contribute to the training of interdisciplinary graduate students. Importantly, it should be possible for faculty at UI and ISU to participate as affiliate faculty and train graduate students as a co-advisor.

4. The review team recommends that incoming students be required to do two to three rotations in the first year in research laboratories involving more than one discipline as a mechanism of locating the most appropriate labs and advisors for interdisciplinary training.

5. A liaison between the Biomolecular Sciences PhD Program and the Materials Science PhD Program should be established. This will promote synergy and allow the programs to become complementary rather than competitive.

6. The retention, promotion and tenure guidelines should be carefully considered by the administration at all levels so that faculty who carry out interdisciplinary, collaborative research are not at a disadvantage.

E. Relationship to other Idaho Graduate Program.

Both the University of Idaho and Idaho State have successful graduate programs that are organized within single departments or single disciplines. There are PhD programs in Biology, Microbiology / Molecular Biology / Biochemistry, Biological and Agricultural Engineering, and Bioinformatics and Computational Biology at the University of Idaho. Idaho State offers the PhD in Pharmacy, Pharmaceutical Sciences, Microbiology, and Biology. These types of discipline based graduate training programs have been the norm in this country since at least the 1950’s. Such programs will continue to play an important role in training specialist within the existing biomedical disciplines. However,
there is an increasing synergy between biomedical and applied science, physics, and engineering, which has been largely the result of advancements in nanotechnology, requires more broadly trained investigators. The term “interdisciplinary” no longer means training that crosses the boundaries between departments with the biological science disciplines such as biology, microbiology, and biochemistry. The term now means crossing the boundaries between the life sciences, physical sciences, medicine, and engineering. There are no existing graduate programs in Idaho that do this. Thus, as the only truly interdisciplinary program in Idaho, this proposed program would fill a major void in graduate training for the state.

A major strength of this program is the role it can play in fostering collaboration between faculty at the 3 Idaho research universities. National funding agencies have recognized the importance of multi-investigator and multi-institutional interdisciplinary research teams for tackling significant biomedical research problems. The fraction of total grant money going to these types of projects has been increasing and will continue to increase in the future. The Idaho BRIN and INBRE programs have made considerable progress toward promoting interactions between investigators at the 3 universities. The proposed graduate program was listed as a deliverable in the INBRE proposals and is an important component in the goal of developing nationally competitive research teams in the IDEA states that in aggregate receive less than 5% of total NIH research funds. This will be the first broadly interdisciplinary graduate program. As such, it can act as a nexus for interdisciplinary research collaborations among the state universities. The development of these collaborations will be critical for Idaho to succeed in the competition with other states for research and infrastructure dollars.

Both the faculty and the administrators at Boise State were very receptive to the committee’s suggestion that the graduate program be open to participation by faculty from The University of Idaho and Idaho State. They were also receptive to the idea that outside faculty could serve as graduate student advisors and, as the program develops, have students working in their laboratories. This would be an ideal outcome for this program if it could ultimately tap the intellectual resources of the state university system. There would no doubt be administrative barriers to extending the program to the other institutions over the near term. So it would seem to be in the best interest of the other institutions for this program to succeed at Boise State. We know from our conversations with representatives from the biomedical devices and biotechnology sector in Boise that the unique interdisciplinary training of the program’s graduates will make them ideal employees. Thus, the PhD program will also contribute to the state’s economic development.

The NIH has made it clear that the future focus of research funding will be directed toward translational research, which is a process that will move discoveries from the laboratory bench to clinical application as quickly as possible. Establishing this PhD program at Boise State will allow Idaho faculty to conduct translational research as well as train a cadre of new investigators who will be particularly qualified to conduct this type of research. The program will facilitate translational research, despite the
absence of a medical school in Idaho. According to the Appendix material and conversations we had with representatives from health care institutions, they are very eager to collaborate with faculty and students at the Idaho universities. In order for Idaho to remain competitive for NIH funding, it is essential for its researchers to establish and maintain interactions with the medical facilities in the state. Because Boise is the home of the major medical facilities in the state, BSU faculty are in the best position for establishing these relationships. A PhD program with a strong biomedical emphasis will be a major step toward growing research collaborations with the existing medical institutions.

Biomedical research at Boise State is limited by the absence of a PhD program. Establishment of this program would move their research to the next level of national competitiveness, which should allow them develop local translational research collaborations. Researchers from the University of Idaho and Idaho State would benefit from such opportunities to conduct translational research either through participation in the graduate program or peer-to-peer collaborations.
APPENDIX A2:

Doctor of Philosophy in Biomolecular Sciences
Boise State University
Response to External Program Review Report
RESPONSE to the Site Visit Report for the proposed
Doctor of Philosophy (PhD) in Biomolecular Sciences at
Boise State University
College of Arts and Sciences
Departments of Biological Sciences, Chemistry & Biochemistry, and Physics
September 20, 2011

Site Visit Report authors (external reviewers):
Judith Van Houten, University of Vermont
Sebastian Wachsmann-Hogiu, University of California, Davis
Lee Weber, University of Nevada, Reno

A. Response to the executive summary

We are in complete agreement with the executive summary. Great care was taken in the design of the Biomolecular Sciences PhD program to ensure that it would be truly interdisciplinary and collaborative (interweaving Biology, Chemistry, and Physics), and that it would not duplicate other PhD programs in Idaho. A key benefit for the State of Idaho is that it will increase the ability of BSU to collaborate with UI, ISU, and state and federal agencies (such as the Veteran’s Administration), and to contribute in important areas of research that will benefit the State of Idaho and all of its universities. Another major educational and economic benefit to the State of Idaho is that it will help meet the needs of companies in Idaho for highly trained personnel, and contribute to providing future employment opportunities for Idaho citizens.

B. Response to Readiness

We are in complete agreement with the Readiness section of the report. Boise State University has almost a decade of preparation for this PhD program, including strategic faculty hiring, acquisition of sophisticated research instrumentation and development of laboratory facilities, and the growth of research collaborations and extramural funding, as outlined in the site visit report. This proposed PhD program is widely supported by the faculty, the departments, the administration, and by the larger community.

C. Response to recommendations

We agree with the spirit of all of the recommendations made in the site visit report, although there are some differences in the specific implementation that warrant discussion. We address the specific recommendations (summarized in italics) one at a time, below.

1. *Equal co-advisors from different disciplines relevant to each student’s research should be approved by the Steering Committee.*

We agree that the students’ PhD dissertation research should involve the input and perspectives from faculty of different disciplines, and that dissertation co-advisors can be a useful way to ensure the multi-disciplinary nature of the program and student’s research. Fortunately, BSU already allows co-advising in
graduate programs, including at the PhD level. The proposed PhD program will implement an approval process, in collaboration with the Graduate College, to facilitate and encourage dissertation co-advising. We will also help meet this goal by requiring each student’s dissertation committee to include at least one faculty member from each of the three key departments (Biological Sciences, Chemistry and Biochemistry, and Physics). In addition, committee members from outside these three departments and from outside the university (e.g., Veterans Administration, and other Idaho institutions of higher learning) will also be allowed to serve on the dissertation committee, upon appointment as affiliate faculty members of the program.

2. The program should develop a student-centric approach and trust in the student and coadvisors. This allows the curriculum requirements beyond the three required core courses to be left to the co-advisors and student, who together will develop a program of courses that are designed to prepare the student for truly interdisciplinary research. The “track” approach to the courses beyond the core should be abandoned and replaced with selection by the advisors with the students, perhaps with approval of the Steering Committee. Courses from outside the College of Arts and Sciences will undoubtedly be needed for many of the students’ training.

We strongly agree that flexibility in courses and research collaborators is important for this interdisciplinary program, and understand and respect the recommendation of the external review team. The review team raises an important concern, that defining specific tracks could have the unintended consequence of making the proposed PhD program less interdisciplinary and less collaborative across departments. This is an issue that the program design committee recognized in its deliberations as having two key aspects: (1) the program must be sufficiently flexible to accommodate a wide variety of interdisciplinary biomolecular research projects, yet (2) the program must be sufficiently rigorous in its courses and training to ensure that all students obtain a solid foundation in Cell and Molecular Biology, Biochemistry, and Biophysics, the foundation disciplines for an informed interdisciplinary education in the Biomolecular Sciences. The program design committee also sought to avoid creating a “big tent” PhD program that would be so minimal in its structure and academic requirements that it could end up housing a collection of several de facto single-discipline PhD programs under the guise of “Biomolecular Sciences”, instead of meeting the intended goal of creating a single, coherent interdisciplinary PhD program.

The recommendation of the external review team to revisit the curriculum and abolish the tracks has been a catalyst for further serious reflection. We have concluded that the best way to meet the recommendations of the review team and the original goals of the program design committee is to take the following actions: (1) keep the core courses (as recommended by the review team); (2) eliminate the formality of tracks (also as recommended by the review team); (3) allow students to take elective courses outside the College of Arts and Sciences (as recommended by the review team), and (4) require that all students take the Advanced Cell Biology (BIOL 611) and one Biophysics course (PHYS 611 or 612) to ensure the proper breadth of fundamental background courses. These curricular changes are easily made by the university; they open the curriculum considerably, allow a greater choice of electives, and significantly streamline the program design.

3. The richness of the pool of potential advisors for the program was not apparent from the formal proposal. However, the review team’s interviews with faculty revealed that there are many interdisciplinary projects in the Biology, Chemistry, and Physics Departments connecting faculty from these departments to others across the campus. The mathematicians, engineers, kinesiologists, and others who are key collaborators with the program faculty listed in the proposal should be recognized as
“affiliate” faculty. The program should be opened up to these faculty and others across the campus, the VA and other health care entities, and other campuses, who can contribute to the training of interdisciplinary graduate students. Importantly, it should be possible for faculty at UI and ISU to participate as affiliate faculty and train graduate students as a co-advisor.

We strongly agree with this recommendation, and note that faculty from other disciplines, and researchers from outside the university, are currently allowed and encouraged to serve on dissertation committees in existing BSU graduate programs, including researchers from the Boise VA Medical Center and other research entities, as well as faculty from other Idaho Universities. The proposed three departments within the Biomolecular Sciences PhD program will make use of the existing approval process, in collaboration with the Graduate College, for appointing affiliate faculty members. The appointment of affiliate faculty members will allow researchers from outside the three departments and outside of BSU, to serve on dissertation committees, and, where warranted, to act as co-advisors, upon approval of the program. Such affiliate program members, will also be required to have appointments as affiliate faculty members in at least one of the three departments (Biological Sciences, Chemistry and Biochemistry, or Physics).

4. The review team recommends that incoming students be required to do two to three rotations in the first year in research laboratories involving more than one discipline as a mechanism of locating the most appropriate labs and advisors for interdisciplinary training.

We agree wholeheartedly with this recommendation. The three departments will work together to implement a requirement of 3 ten-week rotations for all first-year students in the program.

5. A liaison between the Biomolecular Sciences PhD Program and the Materials Science PhD Program should be established. This will promote synergy and allow the programs to become complementary rather than competitive.

We agree that establishing a liaison between the two PhD programs would reinforce the synergy, and encourage greater cooperation, between the two programs. We anticipate that there will be significant synergy and research collaborations between the two programs, based on the extent of the existing research and academic collaborations between the faculty members of both proposed programs. Indeed, several researchers will be faculty members in one PhD program, and affiliate members in the other, and will therefore be able to be supervisors or dissertation committee members in both programs.

6. The retention, promotion and tenure guidelines should be carefully considered by the administration at all levels so that faculty who carry out interdisciplinary, collaborative research are not at a disadvantage.

We agree that the issue of promotion and tenure requires special attention for faculty members carrying out interdisciplinary research that involves multiple departments. A key issue is that different departments typically have significantly different expectations for promotion and tenure, and it is unreasonable to expect a faculty member to meet multiple and widely varying tenure requirements. In order to address this potential difficulty, the faculty lines of each tenured or tenure-track faculty member in this program will reside in one of the three departments (Biological Sciences, Chemistry and Biochemistry, or Physics), even in the case of joint appointments, and the faculty member will be responsible for meeting the tenure and promotion comments of the department in which their faculty line resides. The tenure-granting department will solicit input on the faculty member’s research from all the departments in which the faculty member has an appointment or significant research collaborations.
D. Relationship to other Idaho Graduate Programs

We are in complete agreement with external review committee’s description of the relationship between the proposed PhD program in Biomolecular Sciences and existing Idaho graduate programs. The proposed Biomolecular Sciences PhD program is uniquely interdisciplinary in Idaho, in that it crosses department (Biology, Chemistry, and Physics) and disciplinary (life sciences, physical sciences, biomedicine, and engineering) boundaries in a way, and to an extent, that is not done elsewhere in the state. The establishment of this program will expand and deepen research collaborations across the state, especially between Idaho’s three public universities, and will make Idaho more competitive for statewide research infrastructure grants. Indeed, the creation of the proposed Biomolecular Sciences PhD program at BSU was one of the key deliverables Idaho’s successful INBRE proposals, which was funded by the NIH and which benefitted all the public universities and colleges in the state.
APPENDIX B:
Letters of Support

<table>
<thead>
<tr>
<th>Name and Title</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>David Bieter, Mayor</td>
<td>City of Boise</td>
</tr>
<tr>
<td>Celia Gould, Director</td>
<td>Idaho Department of Agriculture</td>
</tr>
<tr>
<td>John Rogers, PhD Director</td>
<td>Center for Advanced Energy Studies, Idaho National Laboratories</td>
</tr>
<tr>
<td>Chris Ball, PhD Bureau Chief</td>
<td>Idaho Bureau of Laboratories</td>
</tr>
<tr>
<td>John Chatburn Administrator</td>
<td>Idaho Office of Energy Resources</td>
</tr>
<tr>
<td>David C. Pate, MD, JD President and CEO</td>
<td>St. Luke’s Health System</td>
</tr>
<tr>
<td>Sally E. Jeffcoat President and CEO</td>
<td>St. Alphonsus Medical System</td>
</tr>
<tr>
<td>Dennis L. Stevens, PhD, MD Associate Chief of Staff for Research and Development</td>
<td>Department of Veterans Affairs Medical Center, Boise</td>
</tr>
<tr>
<td>Theodore Walters, MD Director</td>
<td>St. Luke’s Mountain States Tumor & Medical Research Institute</td>
</tr>
<tr>
<td>Steve Lackie President</td>
<td>Sapidyne Instruments, Inc., Boise</td>
</tr>
<tr>
<td>Teresa Mitzel Head of Product Evaluation and Advancement</td>
<td>Syngenta Seeds, Inc., Boise</td>
</tr>
<tr>
<td>Xavier Danthinne, PhD President</td>
<td>O.D. 260, Inc., Boise</td>
</tr>
<tr>
<td>Carl R. Thornfeldt, MD Founder and CEO</td>
<td>Episciences, Inc. (Epionce), Boise</td>
</tr>
<tr>
<td>Michael Hill, PhD President</td>
<td>Boise Technology, Inc., Nampa</td>
</tr>
<tr>
<td>Sandy Koch Biology Supervisor</td>
<td>Analytical Laboratories Inc., Boise</td>
</tr>
<tr>
<td>Brian McGovern Microbiology Supervisor</td>
<td></td>
</tr>
</tbody>
</table>
July 27, 2011

James C. Munger, PhD
Vice Provost for Academic Planning
Boise State University
Boise, ID 83725

Re: New Biomolecular Sciences PhD at Boise State University

Dear Vice Provost Munger,

I am pleased to hear that Boise State is pursuing a new doctorate program in Biomolecular Sciences.

I understand this interdisciplinary degree option is designed to meet the needs of students seeking post-graduate education in biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.

This program will benefit Boise in many ways, but here are the most obvious to this mayor. Its students will be Boiseans while pursuing their degrees, contributing both economically and culturally to “the most livable city in the country.” Many graduates will remain in the area, adding to our skilled workforce, advancing our existing biomedical enterprises and starting new ones. It is fact that higher-education research has a positive economic multiplier effect in its host city and far beyond.

The City of Boise and I support your efforts and wish you good fortune.

Sincerely,

David H. Bieter
Mayor
August 3, 2011

James Munger, Ph.D
Department of Biology
Boise State University
Boise, ID 83725-1515

Dear Dr. Munger,

I am writing to express my strong support for Boise State University’s proposed doctorate program for biomolecular sciences. As you know, BSU has a long tradition of recruiting some of Idaho’s best talent and keeping those individuals in the state where they are most needed. There is no doubt that a highly-skilled and well-educated work force is one of the greatest assets to Idaho’s economy and way of life.

Specifically, biomolecular studies have great potential to positively affect the Idaho State Department of Agriculture’s mission of preventing, monitoring and controlling pests and diseases. Moreover, agriculture as a whole stands to benefit from bio-science research. Agriculture has been a driving cultural and economic force in Idaho for generations, and it is a dynamic, evolving industry greatly enhanced by efforts in dozens of fields. Synergy between agriculture and research has paved the way for incredible advancements in Idaho, and I am confident that innovation will continue to help drive Idaho’s success in markets domestically and around the world.

Biomolecular studies have the potential to benefit far more than just one industry sector. Time after time, businesses seeking to expand in or relocate to Idaho look at the work force available in the state and the quality of life enjoyed here. Greater educational opportunities serve both of these areas. Additionally, a Ph.D program does not simply offer an outlet for students seeking educational advancement. A science-based doctorate degree option represents a real and tangible venue for solving problems that interface dozens of fields.

Idahoans already possess tremendous work ethic and drive to succeed. Now we need to empower them with additional opportunities to thrive. I appreciate the opportunity to bring to light the many ways that a biomolecular science doctorate program will benefit all of Idaho. I hope this program proposal receives positive consideration.

Sincerely,

Celia Gould, Director
July 13, 2011

James C. Munger, PhD
Vice Provost for Academic Planning
Boise State University
Boise, ID 83725

Dear Dr. Munger,

I would like to go on record strongly endorsing your proposed new graduate program in Biomolecular Sciences. A PhD in Biomolecular Sciences is not currently offered in Idaho and this program would fill a unique niche as well as being a nice complement to the Bioinformatics and Computational Biology Program offered at the University of Idaho. Such a program is easily justified in the State of Idaho in a highly qualified workforce for existent and emerging biotechnologies.

At the Idaho National Laboratory (INL) and the Center for Advanced Energy Studies (CAES), we perform collaborative research on the most challenging problem for the 21st Century – providing clean energy options for our nation and our state. To this end, we have active programs in bioenergy, biofuels, biocatalysis, bioconversion, micro-biomes and biological aspects of carbon management. Successful execution of these programs relies on the ability to understand the interface between disciplines such as biology, biochemistry, chemistry, materials, and physics. Our successful execution of these programs is reliant on a highly trained and skilled workforce that understands and appreciates the integrated and qualitative aspects of discipline interfaces at the biomolecular level. Our research programs are interdisciplinary by their very nature and often lead to technology-based economic development opportunities within the state. At the INL and CAES we are constantly seeking qualified scientists and engineers to work in these disciplines and typically we must recruit out of state. Your proposed program would go a long way toward providing a highly skilled workforce pipeline for our programs as well as the ever-increasing workforce pipeline necessary to support the growing biotechnology industry in the State of Idaho.

Please do not hesitate to contact me if I can be of further assistance in helping you launch this exciting new educational opportunity at Boise State University.

Sincerely,

J. W. Rogers, Jr., PhD
Director, Center for Advanced Energy Studies

JWR-03-11
July 28, 2011

James C. Munger, PhD
Vice Provost for Academic Planning
Boise State University
Boise, ID 83725

RE: Proposed Ph.D. in Biomolecular Sciences

Dear Dr. Munger,

I am very pleased to provide a letter of support for the proposed Ph.D. program in Biomolecular Sciences at Boise State University. The program’s research foci in bioinformatics, genomics, molecular forensics, vaccinology, and next generation antibiotic development are particularly relevant to public health laboratory work. As such, the Idaho Bureau of Laboratories (IBL) would benefit from close association with faculty and students in the program. Given the interdisciplinary nature of the program, several IBL employees have expressed interest in enrolling when the program is approved. Having IBL scientists in this program would provide an excellent opportunity to advance the research, training and outreach missions of the Bureau. Moreover, the graduates from this program would be well qualified to fill the Bureau’s most technical and difficult to recruit positions. Please feel free to contact me if I can be of further assistance as you seek approval for this important program.

Sincerely,

Christopher L. Ball Ph.D., HCLD (ABB)
Bureau Chief

cc: Jane Smith, Administrator, Division of Public Health and Idaho State Health Official
July 20, 2011

Dr. Jim Munger
Vice Provost for Academic Planning
Boise State University
1910 University Drive
Boise, ID 83725-1001

Dear Dr. Munger,

It is my pleasure to write in support the creation of a new PhD program in Biomolecular Science at Boise State University.

From our standpoint, the proposed PhD program will have two primary benefits. First, one of the research topics in the program focuses on microbial catalysis of biomass, such as agricultural, municipal, and other organic rich wastes, to biofuels. As such, the program has the potential to have substantial impact on Idaho’s ability to create alternative forms of energy and diversify our economic base.

Second, in general terms, the program will generate research and a skilled workforce that will serve the region and state’s economy in the areas of biotechnology, health, and biomedicine.

Sincerely,

John Chatburn
Administrator
Office of Energy Resources
April 12, 2011

Mary Givens
Director
Office of Technology
Division of Research
Boise State University
1910 University Drive
Boise, Idaho 83725-1135

Dear Ms. Givens:

It is my pleasure to write in support of Boise State University establishing a PhD program in Biomolecular Science within the College of Arts and Sciences. My staff have polled many of our physician scientists and administrators at St. Luke's Health System and everyone is quite supportive of this program enhancement.

The interdisciplinary nature of this curriculum is especially appealing. Our physicians have enjoyed the collaboration with your many scientific centers and agree such a PhD program will further the efforts to serve the people of our region. By joining the forces of your biologists, chemists, biochemists and physicists with our clinical physicians, pharmacists and nurse researchers we will indeed create an advanced and contemporary atmosphere for the advancement of students’ education and experience.

On a longer term note, we are also happy that BSU will be supporting a program that will generate a skilled workforce that can serve the state’s biomedical needs and further contribute to Idaho’s economic development.

We are enthusiastic about the development of this PhD program and look forward to our continued working together.

Sincerely,

David C. Pate, MD, JD
President and CEO
St. Luke's Health System
June 13, 2011

Dr. Martin Schimpf
Provost & Vice President for Academic Affairs
Boise State University
1910 University Drive
Boise, ID 83725-1001

Dear Dr. Schimpf,

It is my pleasure to write in support of Boise State University establishing a PhD program in Biomolecular Science within the College of Arts and Sciences. This on-campus doctoral program will offer students the opportunity to combine studies from traditional science disciplines to solve important cross-cutting problems at the interface of contemporary fields in biomolecular sciences.

This program will add value to the mission of Boise State by building on existing and planned strengths to generate a skilled workforce that can serve the region and state’s health and biomedical economy while addressing challenges of national importance. It will additionally add value to Idaho’s economy by providing an advanced degree option in interdisciplinary biomolecular science to meet the needs of students who would otherwise need to relocate to pursue advanced education in the areas of biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.

At Saint Alphonsus Medical Center, we value a workforce with this type of advanced education. Graduates of the PhD program in Biomolecular Science will be prepared and well aligned to industry requirements.

In the longer term, we are also happy that Boise State will be supporting a program that will train scientists who are capable of doing high-quality independent research who can work as part of an interdisciplinary team to solve important problems and generate a skilled workforce that can serve the state’s biomedical needs and further contribute to Idaho’s economic development.

We are enthusiastic about the development of this PhD program and look forward to our continued working relationship.

Sincerely,

Sally E. Jeffcoat
President & CEO
June 13, 2011

Dr. Martin Schimpf
Provost & Vice President for Academic Affairs
Boise State University
1910 University Drive
Boise, ID 83725-1001

Dear Dr. Schimpf:

It is my pleasure to write in a letter in support of Boise State University establishing a PhD program in Biomolecular Science within the College of Arts and Sciences. This on-campus doctoral program will offer students the opportunity to combine studies from traditional science disciplines to solve important cross-cutting problems at the interface of contemporary fields in biomolecular sciences.

This program will add value to the mission of Boise State by building on existing and planned strengths to generate a skilled workforce that can serve the region and state's health and biomedical economy while addressing challenges of national importance. It will additionally add value to Idaho's economy by providing an advanced degree option in interdisciplinary biomolecular science to meet the needs of students who would otherwise need to relocate to pursue advanced education in the areas of biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.

At the Boise VA Medical Center, we value a workforce with this type of advanced education. Graduates of the PhD program in Biomolecular Science will be prepared and well aligned to industry requirements.

In the longer term, we are also happy that Boise State will be supporting a program that will train scientists who are capable of doing high-quality independent research who can work as part of an interdisciplinary team to solve important problems and generate a skilled workforce that can serve the state's biomedical needs and further contribute to Idaho's economic development.

The Boise VAMC is establishing a Biomedical Research Center than can be an important component for graduate education in Boise. Our new facility will be completed in February of 2012.
We are enthusiastic about the development of this PhD program and look forward to our continued working relationship.

Sincerely,

Dennis L. Stevens, Ph.D, M.D.
Associate Chief of Staff for Research and Development
Veterans Affairs Medical Center
500 West Fort Street
Boise, Idaho 83702
Email: dsteven@mindspring.com
June 28, 2011

Dr. Martin Schimpf
Provost & Vice President for Academic Affairs
Boise State University
1910 University Drive
Boise, ID 83725-1001

Dear Dr. Schimpf,

It is my pleasure to write in support of Boise State University establishing a PhD program in Biomolecular Science within the College of Arts and Sciences. I understand that this on-campus doctoral program will offer students the opportunity to combine studies from traditional science disciplines to solve important cross-cutting problems at the interface of contemporary fields in biomolecular sciences.

I know that this program will add value to the mission of Boise State by building on existing and planned strengths to generate a skilled workforce that can serve the region’s and state’s health and biomedical economy while addressing challenges of national importance. It will additionally add value to Idaho’s economy by providing an advanced degree option in interdisciplinary biomolecular science to meet the needs of students who would otherwise need to relocate to pursue advanced education in the areas of biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.

We at St. Luke’s Mountain States Tumor and Medical Research Institute have long valued our association with the faculty at Boise State, and look forward to working with the graduates of the Biomolecular Science program. We have a special interest in individuals who might undertake translational cancer medicine research.

In the longer term, we are also happy that Boise State will be supporting a program that will train scientists who are capable of doing high-quality independent research who can work as part of an interdisciplinary team to solve important problems and generate a skilled workforce that can serve the state’s biomedical needs and further contribute to Idaho’s economic development.

We are enthusiastic about the development of this PhD program and look forward to our continued working relationship.

Sincerely,

Theodore A. Walters, MD
Director
July 27, 2011

James C. Munger, PhD
Vice Provost for Academic Planning
Boise State University
Boise, ID 83725

RE: BSU Proposed Biomolecular Program

Dear Dr. Munger,

Thank you for the information on the proposed new graduate program in biomolecular sciences. We, here at Sapidyne, believe this is an important step in meeting the needs of our area. Personally, I believe that biotech is the greatest growth opportunity for the future. We can either prepare for it and benefit, or ignore it and be left behind. I'm glad to see that you are working to prepare for it!

Sapidyne has hired several PhD level scientists, and so far we have always had to recruit from out of state. The proposed program would not only provide PhD level scientists, but also enable a partnership benefiting both us and the university. In addition to providing exciting research opportunities and internships for the students, having a local program for graduate level studies would help with our employees who wish to further their education. We have had several undergraduate level employees continue their education, and so far that has meant leaving the area. This is not only a loss to our company, but is also a loss of talent to the state.

In our effort to stay at the leading edge with our instrumentation, we continue to have a significant portion of our revenue go back into R&D. Our R&D includes many collaborations with universities to catch new technology at the earliest stage possible. While we have had some collaborative work with BSU, most of our collaborations have been outside of Idaho. For instance, we have had very productive collaborations with Tulane University, UCSF, Thomas Jefferson University, and Tokyo University of Technology to name just a few. All of these collaborations have resulted in publications by the university researchers and enhancements to our instruments and industry reputation. We would prefer to see more of this type of work being done in Idaho. In fact, we would be willing to provide a research grant for a binding study we need done, provided BSU is able to expand its capabilities as described in your proposal.

In summary, we are fully in support of your proposed new program and hope to see it implemented as soon as possible. If there is anything we can do to help, please don't hesitate to contact me.

Best regards,

Steve Lackie
President

700 W. Diamond St. Boise, Idaho 83705 • Fax: (208) 345-5251 • Tel: (208) 345-3400 • www.sapidyne.com
Dr. James C. Munger
Vice Provost for Academic Planning
Boise State University
Boise, ID 83725

July 6th, 2011

PhD program in Biomolecular Sciences

Dear Dr. Munger,

I am writing this letter in support of your intended PhD program for Biomolecular Sciences at Boise State University. Syngenta is one of the world’s leading companies with more than 26,000 employees in over 90 countries dedicated to our purpose: Bringing plant potential to life. Through world-class science, global reach and commitment to our customers we help to increase crop productivity, protect the environment and improve health and quality of life.

Syngenta has our vegetable business seated in this area of the Treasure Valley and locally conducts plant variety development for sweet corn, green beans and peas, as well as research and development of new crop protection chemistry. Syngenta’s Idaho facilities also house our Quality Assurance Lab where we conduct tests on seed germination, seed health and purity tests on our genetics. Having local access to graduate level science courses would be a great asset to our employee development and talent management. Genomics, as well as cellular and molecular biological sciences are fundamental to Syngenta’s success in new product development and integrated solutions for our customer base. It would be an asset to our research endeavors in Idaho to have access to specific courses or a full PhD program without travel or relocation for these areas of study.

It is encouraging to see Boise State University aspiring to meet the needs of the changing world as well as the local economy.

Sincerely,

Teresa Mitzel
Head of Product Evaluation and Advancement - Syngenta Vegetables
July 6, 2011

Dr. Martin Schimpf
Provost & Vice President for Academic Affairs
Boise State University
1910 University Drive
Boise, ID 83725-1001

Dear Dr. Schimpf,

It is my pleasure to write in support of Boise State University establishing a PhD program in Biomolecular Science within the College of Arts and Sciences. This on-campus doctoral program will offer students the opportunity to combine studies from traditional science disciplines to solve important cross-cutting problems at the interface of contemporary fields in biomolecular sciences.

This program will add value to the mission of Boise State by building on existing and planned strengths to generate a skilled workforce that can serve the region and state’s health and biomedical economy while addressing challenges of national importance. It will additionally add value to Idaho’s economy by providing an advanced degree option in interdisciplinary biomolecular science to meet the needs of students who would otherwise need to relocate to pursue advanced education in the areas of biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.

At OD260, Inc., we value a workforce with this type of advanced education. Graduates of the PhD program in Biomolecular Science will be prepared and well aligned to industry requirements.

In the longer term, we are also happy that Boise State will be supporting a program that will train scientists who are capable of doing high-quality independent research who can work as part of an interdisciplinary team to solve important problems and generate a skilled workforce that can serve the state’s biomedical needs and further contribute to Idaho’s economic development.

We are enthusiastic about the development of this PhD program and look forward to our continued working relationship.

Sincerely,

Xavier Danthinne, Ph.D.
President
July 11, 2011

To Whom It May Concern:

Episciences, Inc. is a Boise-based company which manufactures and distributes the physician-dispensed product line, Epionce. As a company based on breakthrough scientific technology in skin care, we are in support of a PhD in Biomolecular Sciences through Boise State University.

The field of medicine is changing as technologies continue to advance rapidly. All companies must keep up in order to stay competitive. For this reason, we welcome a program where innovative research in drug development and biomedical research occur in our hometown. Our products were initially developed to help with the symptoms of skin diseases. Innovative research by graduate students in normal homeostatic and disease processes would also be of interest to us. Additionally, since our products are based upon botanical extracts, local research and potential partnership for plant biotechnology would be incredibly positive for us.

It is our preference to remain in Boise and utilize local resources wherever possible. To have access to graduates of a program of this nature here in Boise is certainly our preference. We would hope that other businesses in similar or supporting industries would either move to or be created in Boise due to a strong program of this nature being founded here.

Sincerely,

Dr. Carl Thornfeldt
Founder and CEO of Episciences, Inc.

Cc Jim Munger
Michael W. Hill, Ph.D.
President/Senior Scientist
michael@boisetechnology.org

James C. Munger, PhD
Vice Provost for Academic Planning
Boise State University
Boise, ID 83725
208-426-4010

Dear Dr. Munger,

As you are aware Boise Technology, Inc is a small high–tech research company located in the Boise valley. In fact, about half of our technical staff is Ph.D. scientists. Although most of our work is in the area of physical chemistry we do currently have one project with a biomolecular focus and we would like to develop more. We are even currently searching for Ph.D. biologist/biochemist/biomolecular scientist to fill an opening in our organization. It would be wonderful if we had a local candidate pool to choose from to fill this position but instead we will most likely have to fill the position from outside the local community. It would be favorable to us if BSU were to have a PH.D. program in Biomolecular Sciences, for developing a local candidate pool as well as for establishing greater collaboration potential between us and the university. I also believe that developing a successful biomolecular program would benefit the establishment of other Ph.D. programs in the sciences at BSU. And this would also be of great value to us.

The bachelor’s level scientists that we hire are usually intelligent and driven. We have lost a few of our brightest junior level scientists to graduate schools out of state. We would welcome more local graduate programs that might help us to retain our brightest with the opportunity to enroll in a local graduate program.

I am very glad to see that BSU is committed to continue to develop new graduate programs in the sciences, and to retain or recruit the brightest and the best to the local community. Please always strive to enhance the capabilities of Boise State University. It will enhance the community.

Best regards,

Michael W. Hill, Ph.D.
July 19, 2011

Dr. Jim Munger
Vice Provost for Academic Planning
Boise State University
1910 University Drive
Boise, ID 83725-1001

Dear Dr. Munger,

It is our pleasure to write in support the creation of a new PhD program in Biomolecular Science at Boise State University.

Analytical Laboratories, Inc. performs comprehensive testing for individuals, private groups, commercial establishments, mines, and government organizations. We are certified for biological, bacteriological, physical, and chemical analyses in drinking water and we perform testing, consulting, and sampling services for wastewater, soil, food, fertilizer, and petroleum products.

From our standpoint, the proposed PhD program will have several benefits. First, it will provide an advanced degree option in interdisciplinary Biomolecular Science for our employees who would otherwise need to relocate to pursue advanced education in the areas of biochemistry, bioinformatics, biophysics, cell biology, and molecular biology.

Second, the program will produce high-quality research that may provide direct and indirect benefits to our business. For example, much of the testing we perform involves technology-intensive protocols that have been developed through similar research efforts.

Third, in general terms, the program will generate research and a skilled workforce that will serve the region and state’s economy in the areas of health, biotechnology, and biomedicine.

Sincerely,

Sandy Koch
Biology Supervisor

Brian McGovern
Microbiology Supervisor
APPENDIX C:

INBRE/BRIN materials

1. Letter of support for the proposed PhD program from Carolyn Bohach, State INBRE Director and University of Idaho faculty member
2. Memo from Scott Minnich, Associate INBRE Director and University of Idaho faculty member, detailing research collaborations.
3. Letter of support for the 2008 INBRE proposal from Dr. Tim White, former President of the University of Idaho
4. Letter of support for the 2008 INBRE proposal from Dr. Lawrence Ford, former Interim Vice President for Research, Idaho State University.
5. Letter of support for the 2008 INBRE proposal from Dr. Bob Kustra, President of the Boise State University
6. Excerpts from 2011 Draft Report from NIH External Evaluation Committee
7. Guide to highlighted excerpt of the 2008 INBRE proposal
8. Highlighted excerpt from the 2008 INBRE proposal
June 28, 2011

James C. Munger, Ph.D.
Vice Provost for Academic Planning
Boise State University
1910 University Drive, Mail Stop 1001
Boise, ID 83725-1001

Dear Dr. Munger:

This letter is to convey my support for the creation of the Biomolecular Sciences Doctoral Program at Boise State University. This program will be a productive collaboration between existing strengths and will provide a focal point around which to grow graduate education and future research efforts at your institution.

The goals stated in developing this Doctoral Program are in-line with the current Idaho IDEAS Network for Biomedical Research Excellence (INBRE) Program supported by the National Institutes of Health (NIH), for which I am Director. INBRE and the proposed Biomolecular Sciences Doctoral Program are both multidisciplinary, collaborative, and focus on the continued growth of research and research-training programs. The thematic focus of INBRE is “Cell Signaling” so there will be synergy with your proposed degree program. The overall goal for both programs is to increase federally-funded biomedical research taking place in Idaho. Therefore, the programs are mutually supportive.

The INBRE Program has facilitated a developing strength in proteomics and protein structure/function studies at Boise State University. Your proposal for the establishment of a Biomolecular Sciences Doctoral Program builds on the early efforts of INBRE and will, I believe, complement existing graduate programs and serve Idaho well by creating a valuable training and research resource for the state.

On behalf of the Idaho INBRE Program, I give my full support to the establishment of the Biomolecular Sciences Doctoral Program at Boise State University.

With best regards,

Carolyn Hovde Bohach, Ph.D., Professor and
Director of the Idaho INBRE Program
University of Idaho and Boise State University- real and potential collaborative research opportunities:

1. Bioinformatics

Under the auspices of the INBRE program, the University of Idaho has assisted BSU in development of a collaborative effort in bioinformatics. Researchers at BSU have access to the U of I bioinformatics core facility headed by Dr. James Foster. Dr. Foster has provided oversight and advice to bioinformatics development at BSU.

2. Infectious Disease and Vaccine Development.
 a. Several faculty members of BSU (Drs. Cornell and Tinker) have acquired funding for vaccine development against West Nile-like virus and Yersinia pestis. Because the U of I has select agent status for Class 1 infectious agents and maintains and runs a ABSL-3 facility, members of the U of I faculty have been requested to be collaborators on grants. Such collaboration would facilitate conducting model organism vaccine trials for vaccine efficacy. This is a natural melding of talents on both campuses since U of I faculty have extensive experience in vaccine development.
 b. Dr. Cornell is also conducting INBRE-funded studies on Escherichia coli O157:H7. This organism is the focus of research in two laboratories at the U of I and Dr. Cornell has spent time on the U of I campus learning genetic techniques to employ in his own studies. The U of I runs and maintains a BSL-2 certified cattle barn to do field trials on this pathogen and its cattle reservoir host. Increased collaboration between Dr. Cornell’s laboratory and the Minnick/Bohach team is welcomed and anticipated.

3. Developmental Biology

Drs. Oxford and Jorysk are conducting developmental biological studies in mice and zebra fish. The latter model organism is used extensively by Dr. D. Stenkamp at the U of I and she has provided training and given advice to BSU faculty. They have a collaborative ongoing research interaction.

4. The U of I INBRE research core sponsors a monthly symposium that fosters collaboration between BSU faculty in Biology and Engineering with faculty from UI, ISU, NNU, and C of I.

In summary, the faculty, the environment, and the students at BSU are poised to expand graduate training at the Ph.D. level. The emphasis in bimolecular sciences will not only be unique, but will further enhance collaborations in the biomedical research across Idaho.
TO: Dr. Carolyn Bohach, Director Idaho INBRE Program

FROM: Tim White, President
 Doug Baker, Provost
 John Tracy, Vice President of Research

RE: A Plan for Sustainability of Biomedical Research Infrastructure at the University of Idaho

DATE: April 15, 2008

Over the past six years the NCRR Division of the National Institutes of Health has invested more than $60 million in biomedical research in the State of Idaho*. A significant fraction of these funds was directed to develop infrastructure at the University of Idaho. The intention of this investment by NIH was that the University would sustain these facilities at the completion of the funding period. Indeed at a recent meeting at the NIH, representatives of the NCRR, our principle funding institute, made it clear that renewal of INBRE would be contingent partly on a firm commitment by the University to sustain this investment after the INBRE grant sunsets. The University recognizes the need to invest in the future, not only to be successful in the next competitive round of INBRE, but also to provide support for research facilities that will recruit and retain the best faculty and students.

To meet these challenges, we will initiate three actions:

First, in the near term, the University of Idaho will commit to providing support to the INBRE program equivalent to one-half of the earned Facilities and Administration costs recovered from a successful INBRE renewal back to the program. This money will be used, as it was in BRIN and INBRE 1, for activities such as the summer undergraduate research conference, seed grants, salary for post-doctoral fellows, stipends for graduate students, equipment service contracts, and to take advantage of unanticipated opportunities. The expenditure of these funds will be directed by the INBRE PI to advance the INBRE program. The University of Idaho Research Office will provide appropriate financial management assistance to ensure that these funds are available.

Second, the University of Idaho will commit to support the bioinformatics facility and the imaging core with a shared INBRE/University cost split beginning in 2009 and extending through 2014, at which point the University will assume the full responsibility of supporting these key research support facilities.
Third, in the longer term we will develop a "Biomedical Research Center" at the University of Idaho. This Center would reside in an existing academic unit, and would develop funding for faculty appointments, support for research infrastructure and support for interdisciplinary graduate programs. Funding for the Center will be solicited by the University through the State Board of Education appropriation process as part of the future strategic research direction of the University. The plan for the Center will also include investments by hospitals and other health care facilities, corporations, foundations and other non-governmental agencies. Once a plan for the UI center is in place, with identified sources of funding, the University could join the statewide biomedical research working group to develop a multi-university cooperative plan.

In addition to this commitment by the University of Idaho, every institution of higher education in Idaho has committed specific statements in real dollar terms towards a plan to sustain what the INBRE Program has built on their campuses and in our state. The theme of Idaho's INBRE renewal proposal is "sustainability." We hope that this letter is viewed as convincing evidence that we are committed to maintain NIH's investment at the end of this grant period.

* BRIN ($8M), INBRE ($16M), COBRE Inf Ds. ($21M), COBRE Evol ($20M), Lariat ($1M), Confocal (~$1M).

By
Name: Tim White
Title: President

By
Name: Doug Baker
Title: Provost

By
Name: John Tracy
Title: Vice President of Research
January 8, 2008

Dr. Carolyn Bohach
Professor
Director of the NIH Idaho INBRE
Department of Microbiology, Molecular Biology, and
Biochemistry
University of Idaho
Moscow, ID 83844-3052

Dear Dr. Bohach:

Idaho State University is committed to building an excellent biomedical research program. We are Idaho’s leader in providing education in the health professions and supporting sciences; such education is a major emphasis of our state-given mission statement. ISU views research as the most effective means to keep our faculty vital and current in their fields. The “Infrastructure Network for Biomedical Research Excellence (INBRE) in Idaho” has been an excellent foundation for expanding our research efforts, and strengthening our ongoing collaborations with biomedical researchers at the other institutions in the region. This letter outlines the institutional biomedical research infrastructure ISU has developed over the last seven years under the BRIN/INBRE program and the long-term, sustaining commitment to this project that ISU will phase in over the next six years.

Over the duration of the BRIN/INBRE program ISU has established the following infrastructure:

1. We have built the ISU Bioinformatics Core, hiring Dr. Michael Thomas, constructed a 24 node bioinformatics computing center that links to the state bioinformatics core at the University of Idaho and hiring Mr. Luobin Yang, bioinformatics system administrator/programmer.

2. New faculty hires in the Departments of Biomedical and Pharmaceutical Sciences, Biological Sciences and Psychology have emphasized researchers with a biomedical focus.

3. Collaborations with faculty from the College of Engineering have developed biomedical engineering projects.

4. Development and expansion of the ISU Molecular Research Core Facility has fostered a strong molecular research emphasis.
5. The "Pipeline to Graduate Education" program has allowed numerous undergraduates to participate in cutting edge biomedical research and we have markedly increased PhD graduates in biomedical emphasis areas.

To sustain and continue the advances ISU has seen under the first 8 years of the BRIN/INBRE program we have established the ISU Biomedical Research Institute (IBRI). To continue the growth and development of biomedical research over the next six years, as INBRE II sunsets, ISU commits to phase in funding, through the IBRI budgeting process, for the following:

1. The Bioinformatics system administrator/programmer position will be moved to a state-line FTE ($50,000+FB);

2. Six, 12-month PhD graduate research assistantships will be funded permanently ($22,000 each+FB);

3. Ten permanent Undergraduate Summer Research Fellowships will be supported ($55,000+FB);

4. Funding for faculty release time (5 annually) will be established for NIH grant writing and submission ($50,000);

5. One FTE for a full-time technician to staff the Center for Biological Imaging ($40,000+FB);

6. Funding for four new tenure-track faculty FTEs with biomedical research emphasis;

7. Establish a fund ($50,000) for service contracts for major biomedical research instrumentation.

I am confident that support from the continuing INBRE award will allow the productive group of ISU researchers to become further self-sustaining in their research efforts. I fully support the proposal, and hope you will give it every possible consideration.

Sincerely,

[Signature]

Lawrence C. Ford
Interim Vice President for Research
April 11, 2008

Carolyn Hovde Bohach
Professor and Director of the NIH Idaho INBRE
University of Idaho
Moscow, ID 83844-3052

Dear Dr. Bohach:

An enhanced ability to address national, regional, and local health concerns by Boise State University is at the core of our motivation for continued growth of medical research capacity and our ability to offer research training programs in biomedical research. The statewide proposal to renew the Idaho-IDEA Network for Biomedical Research Excellence Program (INBRE) comes with my strongest support for the continuing growth in biomedical research capacity at Boise State University.

Boise State has been involved in the Idaho-INBRE Program since 2004 during which time it has provided scholarships and an enriched science experience to many students. This program has supported science education as well as support for a summer research experience for undergraduates. This past summer we received over 100 applications, out of which 37 students were selected for research internships. This program is an example of the successful efforts of our faculty members to recruit, retain, and educate our students. Additionally, young faculty members have received seed grant funding through Idaho-INBRE with which to establish productive research laboratories to address nationally recognized health issues such as Alzheimer’s disease, osteoarthritis and cancer. Research instrumentation has also been made available to faculty and student researchers through the INBRE program in partnership with other funding available from Boise State. We look forward to continuing these activities and strengthening our research programs as we move forward with our plans to establish a multidisciplinary doctoral program in Biomolecular Sciences.

As outlined in this proposal, sustainability of research is our emphasis. To allow the improvements to become integrated into Boise State’s continuing efforts, the University makes the following institutional commitments in support of the Idaho-INBRE Program renewal:

1. **Four Graduate Student Stipends.** The University will cover the costs of these stipends throughout the entire granting period (2009-2014) and beyond.

2. **Recruitment of three new faculty members** that strengthen existing biomedical research emphases at Boise State, and who address the research mission of the NIH.

3. **Two Laboratory Facility Managers/Technicians.** The University will secure non-INBRE funding to support these positions.
4. **Bioinformatics Coordinator.** The University will secure non-INBRE funding for 0.25-FTE for a Bioinformatics Coordinator who will provide informational technology support of research and teaching associated with bioinformatics activities. An additional 0.25 FTE will be funded by the INBRE grant.

5. **Increase in Research Space for the New Faculty Members and a Shared Equipment Core Laboratory.** The University continues to secure state resources specifically for renovating faculty and core laboratory facilities on an annual basis. Those facilities directly supporting the Idaho-INBRE effort will continue to be given a high priority in the University’s funding request throughout the grant-funding period and beyond.

6. **Sustain Instrumentation Centers.** The University will develop and implement a recharge policy to ensure instrument centers supporting the Idaho-INBRE effort have a mechanism in place to become self-sustaining by the end of the granting period.

7. **Ensure Teaching Loads are Compatible with Maintaining a Research Program.** The University has developed a Workload Policy that allows Deans and Department Chairs flexibility in assigning the teaching, research, and service loads of their faculty. Faculty involved with Idaho-INBRE activities will be given due consideration of release time to ensure the goals and objectives of the program are met. Specifically, participants will teach no more than one course per semester which will allow them to carry out research at 75% effort with grant funds available to compensate adjustments in teaching loads if necessary.

8. **Recovered indirect costs.** The University has a favorable policy dictating return of recovered F&A to support research infrastructure.

9. **Online access to scientific journals.** Boise State recently committed to spending more than $1 Million over five years to provide access to faculty and students to more than 1,800 of Elsevier's journals. The availability of this collection will provide support for current programs and research on-campus including biology, engineering, health science, nursing, geophysics, mathematics, biomolecular and biomedical science, chemistry, and musculoskeletal research.

Today, a multidisciplinary approach is essential to address complex biomedical problems. The next generation of young scientists must be trained accordingly, and the establishment of research and research training programs as proposed here will address these needs. It is with great enthusiasm that I offer my support for these efforts.

Sincerely,

Bob Kastra
President
Guidance and Evaluation for the Idaho IDeA Network of Biomedical Research Excellence

A Mid-term Report on Behalf of the National Institutes of Health
by the External Evaluation Committee

EXTERNAL EVALUATION COMMITTEE

George M. Happ, Ph.D.
Christiane Herber-Valdez, Ed.D.
Heywood R. Sawyer, Ph.D.

May 2011
• Proceed expeditiously with approval and funding the Ph.D. Program in Interdisciplinary Biomolecular Sciences at BSU.

• Providing strong, inter-institutional support for the implementation of BSU’s Ph.D. Program as befitting an institution on the threshold of achieving research intensive status. This is a “win-win” opportunity for all Idaho institutions, and is necessary for the continued success of INBRE and its sustainability.

• The Committee was particularly impressed by the developing interdisciplinary biomolecular research program at Boise State University. If approved by the appropriate authorities, the Interdisciplinary Biomolecular Sciences Ph.D. Program would be unique in the State, including researchers and students from biology, chemistry, engineering and other disciplines. The Committee noted the University’s commitment of scarce resources to support this program. Moreover, it is essential for sustaining the research momentum in the Boise area after NIH INBRE funding sunsets.

• BSU is progressing toward becoming a Carnegie Mellon designated Research Intensive University. Critical to maintaining this momentum is the approval and implementation of the Biomolecular Sciences Ph.D. Program. This would be a unique interdisciplinary program, and would clearly complement and enhance the existing Ph.D. programs at UI and ISU. The potential for inter-institutional collaborations between these programs is outstanding.
Guide to highlighted portions of the INBRE-2 proposal that are relevant to the PhD in Biomolecular Sciences that is proposed by Boise State University.

1. Reference to the overall structure of the Idaho INBRE network
 - Page 320: Paragraph and table describe the institutions that participate in INBRE (including the University of Idaho, Idaho State University, and Boise State University) and the fact that MOUs have been developed to describe the arrangements of the collaborative agreement among institutions.

2. References to Boise State University creating a PhD in Biomolecular Sciences:
 - Page 308: Paragraph gives an overview of all of the institutions participating in INBRE
 - Pages 315 and 316: Description of progress on strategies to increase the number of graduate students. First described are two graduate programs at the University of Idaho that were created in part based on INBRE funding. Following that is a description of Boise State University’s proposed PhD in Biomolecular Sciences, which the INBRE proposal describes as an unprecedented step in providing access to graduate education in the biomedical sciences near the population base of Idaho.
 - Page 328: Description of proposed efforts to facilitate graduate education, including the creation of a new PhD in Biomolecular Sciences.

3. References to the development of a proteomics core lab at Boise State. Note that Boise State’s focus on proteomics was to be in the development of a core facility, not in the focus of (or limitation of) its research.
 - Page 310: Paragraph gives an overview of research core facilities, etc., developed with INBRE funding.
 - Page 313: Description that all INBRE researchers are able to access major instruments at the various institutions.

4. References to the development of research collaborations among the researchers at INBRE-supported institutions.
 - Page 313: States that these research collaborations among institutions form the basis for many of the collaborative projects proposed in the application. Note that the descriptions of proposed research are regarded as confidential and therefore may not be shared with CAAP and OSBE.
 - Page 326: A figure depicts collaborations among faculty members.

5. References to the importance of INBRE in supporting the growth of the biotechnology industry in Idaho.
 - Page 319: Description of a gathering of biomedical/pharmaceutical representatives and the role of INBRE in that gathering and in facilitating biotechnology in Idaho.
 - Page 331: Description that INBRE will continue efforts to support the development of the biotechnology industry of Idaho.

6. References to the extensive resources that Boise State University and INBRE have been devoted to the support of biomedical research at Boise State.
 - Page 320: A table listing the types of support, including renovations of research labs, increase in other infrastructural items, new faculty members, faculty development, graduate student support, and library resources.
 - Page 328: References new faculty lines and new graduate assistantships that were created at Boise State University to support the proposed PhD in Biomolecular Sciences.
RESEARCH PLAN FOR THE NETWORK

Specific Aims

1. To strengthen Idaho's biomedical research infrastructure and expertise by building on the established INBRE network with the scientific theme of "Cell Signaling".

2. To provide support to Idaho faculty, post-doctoral fellows, and graduate students to increase the research base and capacity.

3. To provide research opportunities to Idaho undergraduate students and serve as a pipeline for these students to continue in health research careers.

4. To enhance the science and technology knowledge of Idaho's workforce.

5. To expand Idaho research opportunities across the Western IDEaR Region.

Background and Significance

The BRIN and INBRE-1 Programs have had a profound effect on biomedical research at every level and in all regions of Idaho. Unprecedented research and educational collaboration were built between ten institutions in Idaho. This Network fosters core laboratory facilities, support services, faculty research, graduate and undergraduate student research opportunities, a pipeline to graduate education, and outreach to the community.

Figure 1 shows a to-scale map of Idaho against the US Eastern seaboard to highlight Idaho's large geographic area, mountainous terrain, limited four-lane highway system, and the locations of the INBRE Network institutions. Nine Idaho institutions of post-secondary education and the Boise VA Medical Center participated in the INBRE-1 Program and continue in this INBRE-2 renewal application. The University of Idaho (UI, ▲) at Moscow is Idaho's flagship Land Grant, Carnegie Foundation-ranked Research-Intensive University and administers the INBRE Program. Idaho State University (ISU, ▲) at Pocatello is also a Research-Intensive University. Three Research Partner Institutions with developing research activities include: Boise State University (BSU, ●), a metropolitan university about to begin its first PhD program in biomedical sciences; and two small liberal arts colleges, The College of Idaho (CI, ●) at Caldwell and Northwest Nazarene University (NNU, ●) at Nampa. Four Outreach Institutions (●) that serve undergraduate students, exclusively, include: Lewis-Clark State College (LCSC) at Lewiston; Brigham Young University-Idaho (BYUI) at Rexburg; and two State-funded community colleges, College of Southern Idaho (CSI) and North Idaho College (NIC).

Table 1. Idaho INBRE Network Institutions with Abbreviations

<table>
<thead>
<tr>
<th>Research Intensive</th>
<th>Research Partner</th>
<th>Outreach</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI - University of Idaho</td>
<td>BSU - Boise State University</td>
<td>BYUI - Brigham Young Univ.-Idaho</td>
</tr>
<tr>
<td>ISU - Idaho State University</td>
<td>CI - The College of Idaho</td>
<td>CSI - College of Southern Idaho</td>
</tr>
<tr>
<td>NNU - Northwest Nazarene University</td>
<td>LCSC - Lewis-Clark State College</td>
<td></td>
</tr>
<tr>
<td>VA - The Boise VA Medical Center</td>
<td>NIC - North Idaho College</td>
<td></td>
</tr>
</tbody>
</table>
Idaho’s population of 1.47 million is rapidly growing with an increase of >13% since 2000. Idaho’s minorities and underserved populations include many first-generation college students (at some colleges >65% of the student body), a small number of Native Americans (seven tribes with a combined population of 20,530), and people of Hispanic or Latino origin (total population, 139,000).

Sustainability Theme

An overarching theme of this renewal application is "Sustainability." That is, how can the research infrastructure and programs started with the BRIN/INBRE initiatives be maintained for the foreseeable future? To address this question, the President of each participating institution supplied a letter of commitment that explicitly outlines how the essential INBRE programs on their campus will be sustained as INBRE-2 sunsets in 2014 (see Letters of Support, pages 333-348). Each institution has a different culture and thus each has defined a specific subset of programs they intend to support with permanent funds beyond INBRE-2. In addition to these institutional commitments, the UI’s letter commits to develop a statewide initiative to create a permanent inter-institutional network modeled after INBRE to sustain specific research and science education programs. Thus, not only will each institution continue INBRE programs critical to its mission, but the most successful legacy of INBRE, "The Network", will also be sustained in Idaho.

Progress Report – INBRE-1 Accomplishments

INBRE has been a catalyst for transformations to research competitiveness. One profound effect of INBRE funding has been to change the culture at the primarily undergraduate teaching institutions (Research Partners) to embrace research in educational programs and as opportunities for faculty rejuvenation. Dr. Heggland is one of the 17 successful faculty at the Research Partner Institutions who participated in Idaho’s INBRE-1. Her story (below) epitomizes the power of INBRE funding to make a sustainable difference in the lives of faculty and the students who are the nation’s next generation of scientists.

Dr. Heggland’s Story

From humble beginnings with one student growing tissue culture cells in a cabinet drawer, to receiving the first ever NIH R15 grant at the small liberal arts College of Idaho (CI), the development of Dr. Sara Heggland’s research program epitomizes the significance and realized potential first envisioned with the award of funding from the BRIN/INBRE Programs. Seven years ago, Dr. Heggland was a full-time Biology teacher at CI hoping to squeeze some research in "on-the-side," and possibly have one student work in her “lab." Now, thanks to BRIN/INBRE funding, Dr. Heggland considers herself a "teacher-scholar and research mentor" at this small four-year, liberal arts institution. Twenty-five of her undergraduate students have presented original research at 20 regional or national meetings.

Last year, two of her students were first authors on peer-reviewed publications and several of her INBRE-funded undergraduates are attending graduate school. Dr Heggland’s excitement for research extends beyond her own laboratory and has inspired the entire CI campus. She was invited to apply for a coveted Howard Hughes grant to continue the successful undergraduate research program at CI that was begun with BRIN/INBRE funding. She spearheads a campus-wide research conference, now in its third year, which draws more than 20% of the student body from 15 different departments/programs and attracts funds from the CI central administration to foster the growing research culture. Dr. Heggland’s involvement in BRIN/INBRE-funded research revitalized her career and inspired her to teach through research and stay current in her field. She models for her students those qualities inherent to achieving success in scientific research. Dr. Heggland’s transformation is a microcosm of the Idaho INBRE Program achievements. With the BRIN/INBRE investment, talented faculty at small schools are advancing their research, establishing collaborations with previously inaccessible colleagues, and creating a research culture where there was none before. The increased competitiveness fostered by BRIN/INBRE will sustain the improved research facilities and environment for the next generation of scientists.
The Idaho INBRE-1 Program had five goals:

- **Goal 1. Establish a Multidisciplinary Research Network**
- **Goal 2. Establish a Network of Research Partners**
- **Goal 3. Establish a Pipeline to Graduate Education**
- **Goal 4. Enhance a Network of Outreach Colleges**
- **Goal 5. Enhance the Scientific Knowledge of the Workforce**

Significant progress was made towards each Goal. The Idaho INBRE-1 administrative structure was developed at UI and was critical to the success of the program. It brought together talented leaders and scientific mentors to enhance and maintain the research network across Idaho. The Central administration included the PI (Director), a Program Coordinator (Associate Director), a Bioinformatics Coordinator, an Outreach Coordinator, and an Evaluator. Three important committees monitored program progress and included, (i) a Statewide Steering Committee with representatives from each Network institution and the UI Vice President for Research; (ii) a Senior Advisory Research Committee (SARC) comprised of Idaho researchers with strong track records of NIH and other extramural funding and a commitment to guide junior investigators in the Network; and (iii) an External Advisory Committee (EAC), comprised of experts in the “Cell Signaling” research theme, minority recruitment, and evaluation. For the administrative structure and list of the individuals on each committee, see Appendix A, Tables A-1 to A-4 on CD.

Progress towards Goal 1 Establish a Multidisciplinary Research Network

Faculty, students, and support staff were involved from all campuses (FIG. 1) under the umbrella of the scientific theme, “Cell Signaling”. Outlined below (1-4) are measurable outcomes from the Idaho Network that include increases in research infrastructure and use, support services, capacity, statewide and regional communication, and scientific collaborations.

1. **Developed or enhanced research facilities in the Network that were well used: Research Core Laboratories, Statewide Bioinformatics Facilities, and Research Vivarium.**

Figure 2 shows the number of investigators (by year) that used the INBRE Research Core Laboratories and Facilities. Based on the existing strengths at the three universities (UI, ISU and BSU) research core labs and facilities were enhanced or introduced. At the UI, the microarray, molecular biology, and imaging core labs were enhanced; at ISU, a molecular research core lab was developed with emphasis on DNA sequencing; at BSU a proteomics core lab was developed. Each of these core labs has a dedicated technician who trains faculty and students and is responsible for maintaining the equipment. BRIN/INBRE-1 funding was leveraged to gain support from other sources including the NCRR Shared Instrumentation Program and the Murdock Foundation, and at the UI, INBRE partnered with the two COBRE Programs to improve the Research Core Labs. Examples of important large equipment purchases that significantly enhanced the Idaho research environment included an IVIS 200 for in vivo imaging, a multi-photon laser confocal microscope, a DNA Sequencer, a Tandem Mass Spectrometer, an analytical ultracentrifuge, a flow cytometer, SEC-MALS and FFF-MALS, and a 600 MHz NMR Spectrometer. See Appendix B, on CD for the list of large equipment purchased with INBRE-1 funds. At the Boise VA, INBRE funding opened the conveniently located Animal Research Vivarium to faculty and students from BSU, CI, and NNU (all within a 25 mile radius).

Bioinformatics capabilities were enhanced or built at all Network institutions and ranged from the main Beowulf cluster and components at the UI to smaller workstations at the two-year colleges. ISU and BSU both introduced dedicated bioinformatics classrooms and research facilities. Hardware and software (specific to scientific foci) were upgraded routinely. INBRE funding for these upgrades was leveraged for NSF instrumentation awards (ISU, BSU), institutional funds (UI), and a COBRE award (UI). Access Grid Node
Program Director/Principal Investigator (Last, First, Middle): Bohach, Carolyn H.

Classrooms were installed at UI, ISU, and BSU to provide high-bandwidth multipoint (worldwide) classes and seminars that were recorded and podcast.

Part of the "sustainability" effort has been to build the costs of this research infrastructure into the operating base of the three universities. For example, in 2007, the UI bioinformatics coordinator (Dr. C Brown) and one systems administrator (R Lyon) were moved to permanent state-funded salaries and BSU hired a tenure track, full-time bioinformatics faculty member (Dr. G Yu). See Appendix B on CD, for INBRE-1-supported Instrumentation and Equipment Acquisitions for Research Core Labs and Statewide Bioinformatics Facilities.

2. Developed bioinformatics training at every institution in the Network
Bioinformatics workshops that focused on research and teaching techniques were part of the agenda at every Annual Idaho INBRE Summer Research Conference. For example, in 2004, the workshop presented beginning, intermediate, and advanced bioinformatics applications. Faculty, students, and staff attended workshops consistent with their level of expertise. The statewide bioinformatics coordinator (Dr. C Brown) traveled to each campus to follow-up the workshop by offering one-on-one training. In addition, bioinformatics-savvy faculty or staff at each campus answered day-to-day bioinformatics software-use questions. The ISU Bioinformatics Symposium, which has been held annually since 2003, hosted training sessions for educators and researchers and showcased collaborative research activities with participants from throughout the Pacific Northwest. In 2008, ISU conducted a separate workshop on applied bioinformatics for microbial genomics that included participants from UI, BSU, CSI, the Idaho National Lab, and several local biotech companies.

Separate from the formal workshops and symposia, INBRE bioinformatics services were used heavily. For example, in a one year period (2007), the bioinformatics coordinator had over 50 individual meetings with 20 faculty and postdocs, 10 graduate students, and 3 undergraduates - including individual INBRE researchers from all Idaho research institutions and from other INBRE states. Also, bioinformatics personnel were co-PIs or supporting scientists for multiple NIH and NSF grant proposals requiring bioinformatics expertise.

3. Enhanced statewide telecommunications for the Network
Regular telecommunications meetings between researchers at various institutions were established using the Breeze videoconferencing system. One outcome was a biology curriculum articulation agreement between two-year and four-year colleges.

Using NIH Lariat funds [under the directorship of Dr. G Jacobs (Montana State Univ.) and Dr. R Johnson (Univ. of Washington)] with a UI match, a 2.8 Gbps connection with the Northwest Gigapop was established in Idaho. This connection significantly enhanced access to national data sources and imaging facilities through wideband connectivity. In 2005, small Access Grid Nodes were built at UI, ISU, and BSU to enable long-distance research meetings. By 2010, connections will be expanded to 10 Gbps, enabling teragrid connections through the Univ. of Washington in Seattle. Idaho institutions and researchers will have access to this infrastructure through UI. An outstanding result of the improved telecommunications and interactions with the Univ. of Washington was that 27 Idaho INBRE researchers were given access to e-journal holdings through affiliate faculty appointments with that institution. This single action significantly improved Idaho's research competitiveness through these faculty and their laboratories.

4. Established a Western INBRE states Network
Through the Western IDEa Consortium, formed during BRIN, and with better telecommunications links between the seven Western states, the INBRE directors met monthly to discuss common challenges and new opportunities. Shared research interests, potential collaborators, and available core facilities were identified and interactions were designed to foster new collaborations. The first multi-state INBRE Symposium on Infectious Disease resulted in April 2006 at the UI. More than 100 individuals representing all seven Western IDEa states participated (AK, HI, ID, MT, NV, NM, and WY). Additionally, the annual bioinformatics conference was developed, the first successful western INBRE lab meeting (AK, ID, and MT) was hosted by Idaho in 2006, and a bioinformatics colloquium was held in 2007.
Progress towards Goal 2 Establish a Network of Research Partners

INBRE-1 recruited key Idaho researchers working in the scientific theme of "Cell Signaling." This broad topic was chosen to allow the greatest participation of faculty researchers and students at the Research Partner Institutions and to foster their interactions with UI and ISU (research-intensive institutions). Outlined below (1-10) are specific activities and measurable outcomes from the Idaho Network that included recruitment of research faculty, mentoring, increased publications, increased presentations, increased grant applications and funding, and increased intrastate and interstate networking that built relationships to enhance research opportunities.

1. Recruited faculty at Research Partner Institutions

At the beginning of INBRE-1, all faculty interested in participating in INBRE-sponsored research were required to write a 10-page proposal outlining a specific project and career plans. Proposals were peer reviewed, modified, and resubmitted for final approval by the External Advisory Committee and the NIH NCRR staff. A total of 17 faculty from three Research Partner Institutions participated in INBRE-1 at various levels.

2. Provided various levels of faculty participation in research at the Research Partner Institutions.

To maximize flexibility and encourage greater faculty involvement in research, four levels of participation were designed:

- The "Magnet PI" (similar to the NIH Junior Investigator) committed at least 50% of their time to research. They received salary commensurate with this time and funds for a technician, travel, and supplies.
- The "Research Collaborator" committed at least 25% of their time to research, usually in the summer, and worked in collaboration with another lead researcher. They received salary commensurate with this time and funds for travel and supplies.
- The "Student Research Mentor" was a category created in the third year of INBRE-1 (in response to external review of the Program) for faculty who were interested in having students work in their lab, but not in developing an independent research program. They were provided partial summer salary and a modest supply budget.
- The "Mentor PI" also created in the third year of INBRE-1 (in response to external review of the Program) for more senior researchers interested in continuing their own research and serving as mentors for two of the more junior investigators.

3. Provided faculty mentoring

Magnet PIs (junior investigator) were required to identify a scientific Mentor to guide their research. The INBRE Program Coordinator spoke directly with the Mentor to explain the level of commitment and expectations that included:

- An initial face-to-face meeting(s), usually in the mentor's lab, to discuss the research plans and career goals of the junior investigator.
- Assistance in preparing manuscripts.
- Review of Specific Aims, and assistance in grant preparation.
- Exploration of joint collaborations between the junior investigator and mentor.
- Continued periodic meetings between the junior investigator and mentor.

4. Set expectations and required annual non-competing renewals

Funding to each investigator, regardless of the category, was provided on a yearly basis, contingent on successful performance. The expectations were geared to each level of research participation (see Appendix C on CD for the INBRE-1 annual expectations, Tables C1- C-4). Progress towards these objectives was compiled by each researcher in a non-competing renewal package and reviewed each April by the Senior Advisory Research Committee (SARC). If sufficient progress was made, funding was awarded for the next year. This was more than a "rubber stamp" process. In fact, in three cases, funding was reduced or eliminated for lack of performance. The non-competing renewal process was important because it provided clear...
benchmarks for researchers to work toward and gave them a sense of achievement each year as their research skills grew. The process also assured quality control in the INBRE-funded research being conducted.

5. Established a Senior Advisory Research Committee (SARC)
The Senior Advisory Research Committee (SARC) was comprised of senior researchers in Idaho each of whom has current (or previous) grant support from the NIH (see Appendix A on CD, Table A-2 for SARC members). The SARC served to i) review the annual non-competing renewals of all INBRE-funded investigators; ii) assure that appropriate, successful, ongoing mentoring was provided to each investigator; and iii) review all new faculty applications to become an INBRE researcher. SARC decisions were forwarded to the External Advisory Committee (EAC) for review.

6. Held monthly networking meetings with Research Partners Institution faculty
The researchers from the Research Partner Institutions met monthly with the INBRE Program Coordinator (MB Laskowski). Conveniently, the three institutions (CI, BSU, NNU) and the Boise VA Medical Center are located within a 25 mile radius. Attendance was consistently high with 12 to 15 faculty at every meeting. Discussion topics included strategies for publishing papers, mentoring undergraduates in research, preparing grant budgets, and balancing teaching obligations with research. An important byproduct of these networking meetings was the formation of new collaborations between faculty at different institutions. In fact, this became the basis of many of the collaborative projects proposed in this renewal application (pages 364-500).

7. Assured access to Research Core Labs for all Idaho researchers.
INBRE-1 funds supported the use of Research Core facilities by all researchers in Idaho. Figure 2 shows the Core Labs and Facilities and the increased usage by year from 2004 through part of 2008.

8. Developed laboratories and facilities of research labs at Research Partner Institutions
Each partner institution in the Network developed laboratory infrastructure that ordinarily included small equipment (see Appendix D, on CD, for list of instrumentation and equipment). All researchers in the Network were able to access major instruments at the Core Research Labs and Facilities at UI, ISU, BSU, and the VA. Samples were either transported by the investigators or sent to the labs where they were processed.

9. Provided funds for seed grants and monitored progress toward submission of grants
Over eight years, seed grant funds were provided to researchers at UI, ISU, and BSU with the express purpose of igniting increased grant applications and awards. As illustrated in Figure 3, the investment of $1.2 million resulted in a stunning >20-fold increase in new research funds coming to Idaho.

10. Increased the number of grant applications, grant awards, journal publications, and scientific presentations from the Idaho Network
Figure 4, below, shows a compilation of the productivity of INBRE-funded investigators across the Idaho Network. Expectations for all INBRE-supported researchers included presentation at scientific meetings, publishing in high quality peer-reviewed journals, and submitting R-type grant applications to the NIH and other federal and non-federal agencies, as appropriate. Investigators at the research intensive UI and ISU needed little mentoring for these activities. Faculty at the Research Partner Institutions were guided towards each goal via interactions (i) with their scientific mentor, (ii) with the SARC, (iii) at the monthly meeting of the Network of Research Partners, (iv) at the Annual Idaho INBRE Summer Research Conference, and (v) at the bi-annual EAC/Steering committee meetings. As outlined above, annual

FIG. 3. Funding Outcomes of 35 Seed Grants

- $1.2 Million Invested
- 67 New Grants
- $26 Million Investment Return

PSB 982590 (Rev. 11/07) Page 313 Continuation Format Page
Program Director/Principal Investigator (Last, First, Middle): Bohach, Carolyn H.
expectations were established and investigators did a formal non-competing renewal process with the SARC to secure continued INBRE funding (See Appendix C, on CD).
Specific mentoring activities included guidance in manuscript writing and grantsmanship. The scientific mentor had a critical role in both activities. Magnet PIs (junior investigators) were encouraged to develop specific aims early on, and to review these with the scientific Mentor. Drafts of experimental approach and methods were analyzed critically by the Mentor. Also, in-person visits were encouraged between the investigator and scientific Mentor to review summary statements of un-funded proposals so necessary improvements could be incorporated into re-submissions.

Other activities were provided to help Idaho faculty improve their competitiveness in biomedical research. For example, manuscript writing and grantsmanship skills were part of the agenda at every Annual Idaho INBRE Summer Research Conference. In 2007, the video entitled, Inside the NIH Grant Review Process, provided by the NIH Center for Scientific Review was continually playing in a viewing room throughout the conference and attendees all received a copy of the DVD to own. To help faculty submit the best grant application, the option was offered to have all grant applications reviewed by experts who applied NIH and NSF standard scoring criteria. Also, assistance was provided to researchers to explore non-NIH funding. Finally, bridge support for "meritorious but not funded" proposals was provided. Although common at many institutions, bridge-funding is not a policy, even at the research-intensive institutions in Idaho. Figure 4 shows that total non-INBRE grant award dollars, publications, and presentations all more than doubled over the period. Activity increased at all institutions including the Outreach schools that were awarded ~$200,000 in 2007.

Progress towards Goal 3 Establish a Pipeline to Graduate Education
Activities for students majoring in science and health-related fields were developed to increase the number of participants in a pipeline to graduate education. Outlined below (1-5) are measurable outcomes from the Idaho Network that included increases in opportunities for undergraduate students, graduate students, and post-doctoral fellows to participate in research, increases in exposure to science for K-12 students, and enhancing science teaching skills for K-12 educators.

1. Increased undergraduate student participation in biomedical research
Four avenues of undergraduate summer research participation (Fellows, Scholars, Interns, and Academic Year Researchers) were developed and described here:

- **The INBRE Summer Research Fellows Program**
 This program was the most successful and popular among faculty and students, alike. At the research-intensive (UI and ISU) and Research Partner institutions (BSU, NNU, CI), upper-class undergraduates participated in laboratory research for 10-weeks during the summer. Students were paired with a faculty member and a specific research project. At the end of the 10-weeks, students and faculty from across Idaho came to the Annual Idaho INBRE Summer Research Conference to share their research through poster sessions and scientific talks. INBRE funded between 30 and 40 students each year. The program was so popular that several institutions used other funding sources to increase participation. For example, BSU supported 2-8 "extra" Fellows/year. An important measure of the quality of
Program Director/Principal Investigator (Last, First, Middle): Bohach, Carolyn H.
these programs was the achievements and career paths chosen by the Program alumni. Figure 5, above, shows that 68% of the students entered graduate or professional school in the biomedical arena.

- **The INBRE Summer Scholars Program**
 Because students with no lab research experience often have difficulty finding their first research opportunity, this program served to enhance their competitiveness. Each July, 12 to 18 freshman and sophomore students with an interest in science as a career but with no research lab experience spent two weeks at BSU under the supervision of a faculty/graduate student team in molecular biology. The students worked in groups of four or five on research problems that required learning PCR, gene cloning, DNA sequencing, and protein purification. At the end of the two weeks, the team created a poster, and presented their results at the Annual Idaho INBRE Summer Research Conference. Figure 6 shows that although 64% of these students are still undergraduates, 14% went on to do further research as graduate students or INBRE Fellows and another 9% are in professional school.

- **The INBRE Internship Program**
 Internship programs placed students from Outreach Institutions into research laboratories, local biotechnology and other industries, or health care facilities for 10 weeks in the summer. These experiences gave students needed practice and exposure to new skills in laboratory techniques.

- **Academic Year Researchers**
 Depending on the funds available, undergraduate students did research at the Research Partner Institutions (BSU, CI, NNU). Their research experience enriched their undergraduate education and provided critical continuity in faculty research labs at institutions that do not have graduate programs. Figure 7 shows the overall number of undergraduate students by program and year. Participation by minority/disadvantaged students was sought in each program. All undergraduates in the Idaho Network were informed about graduate programs and career opportunities in research. An 'Undergraduate Research Coordinator' was designated at each participating institutions to advise students who expressed interest in science careers. Also, at the Annual Idaho INBRE Summer Research Conference, undergraduate students from every region of the state interacted with graduate students, postdoctoral fellows, and faculty. These interactions exposed students to the research opportunities in Idaho and to contacts who could help guide their education.

2. **Increased the number of graduate students in biomedical research**

Several strategies were used to increase the number and quality of graduate students in the Network. The quality of the applicant pools and participants was monitored and enhanced recruitment was developed. In 2003, the UI established two new MS/PhD training programs: Bioinformatics and Computational Biology and Cognitive Neurosciences. INBRE funded 3 to 4 PhD graduate students in these programs each year. Figure 8 shows the number of graduate students in these programs. Applicants were admitted only with
Program Director/Principal Investigator (Last, First, Middle): Bohach, Carolyn H.

financial support and admission was highly selective. Students were required to have regular thesis committee meetings, and major professors were required to submit annual progress reports for each student. The graduate program reviewed student progress each semester and adequate mentoring was provided to all students. Both programs were cited by an external review of all graduate programs at UI (the “Yardley Report”) as among the best on the UI campus, and were recommended for deeper university investment. Both programs have graduated the first cohort of PhDs, some of whom were INBRE-supported.

A critical part of creating an effective pipeline to graduate education was to develop and add to the science curriculum and programs offered at the Network institutions. The Idaho State Board of Education recently approved BSU’s ‘Notice of Intent’ to establish a new PhD program in Molecular Biosciences and new MS programs in Biochemistry and Chemistry. These are unprecedented steps to providing access to graduate education in the biomedical sciences near the population base of Idaho. The success of BSU’s proposal was a direct result of INBRE. It was by INBRE-funded research, INBRE-enabled access to the Boise VA Vivarium facilities, and INBRE-guided leadership to the BSU administration that these new graduate programs will be a reality.

3. Increased postdoctoral training
The “end of the pipeline” is the postdoctoral fellowship. Five goals were set to increase the number of trainees and enhance the quality of their experiences:

- Developed a competitive two-year Post-doctoral Fellow program at the Research Intensive Institutions, UI and ISU. In 2005, six awards were made. These activities almost doubled the number of post-doctoral fellows in biomedical areas between 2002 and 2008 (FIG. 9).
- Assured nationwide recruitment of postdoctoral fellows at UI and ISU.
- Monitored progress of the postdoctoral fellows toward productive research experience. Applications for postdoctoral fellow support were reviewed externally. One of the criteria for awarding the funds was that the fellow would work in a productive environment.
- Assured appropriate mentoring of fellows.
- Assisted in eventual placement of postdoctoral fellows as appropriate.

4. Increased participation in K-12 science and math
The “beginning of the Pipeline” is K-12, but the BRIN/INBRE-1 RFAs precluded use of direct funds in this area (NIH policy allowed K-12 investments starting in 2006, but no new funds were available). Nevertheless, such programs were considered vital to increasing the number of students in science and biomedical research careers, and therefore indirect cost returns were used to support these initiatives. To reach the largest number of students with the limited resources, existing programs were augmented rather than new ones created. Even the minor infusion of funds had a staggering effect, increasing the number of participants by the 1000s (FIG. 10). Briefly, programs included: (i) ‘UDOC’, directed to students from minority or disadvantaged backgrounds, (ii) ‘Fired Up’, an environmental study project for high school students and their teachers, (iii) ‘Science Extravaganza’, four days of science demos and talks for junior high students in Nampa, ID, (iv) ‘Science Olympiad’, a statewide competition for both junior and senior high school students in more than 20 science &

5. Trained K-12 educators in teaching science.
The popular and traditional Summer Science Camp at CSI gives sixth grade students experiences in science. Last year, the program was re-vamped to focus on ‘teaching the teachers’. Elementary school educators with limited experience in science education participated in a week-long course taught by CSI science faculty. The course identified the core elements of teaching the scientific method and provided opportunities to explore how to teach science in the classroom. Each teacher developed activities to capture the excitement and satisfaction that comes from doing science. After four weeks of collaboration with the CSI faculty mentor, the 6th grade teachers used their projects to teach at the Summer Science Camp. This experience gave the educators the confidence and support to introduce these activities into their traditional classrooms, where minimal science had occurred, previously. The approach of ‘teaching the teacher’ sustained the activity, reached a much larger number of students, and successfully addressed the need for improving K-12 science education. When the medical staff at the local hospital heard of this project, they immediately pledged $2,000 to support its continuation. Professors at CSI are writing a grant proposal to the Idaho State Board of Education for funding to expand the program.

Progress towards Goal 4 Enhance a Network of Outreach Colleges
The Outreach Institutions (NIC, LCSC, CSI, and BYU), focus on high quality undergraduate education and served a vital role in the Idaho Network. Outlined below (1-6) are specific activities and measurable outcomes that enhanced student preparation for science technical positions, graduate school, or professional training. Included are curriculum modernization, course articulation, integration of bioinformatics into the curriculum, professional development opportunities, intern training, laboratory equipment acquisitions, and K-12 outreach.

1. Facilitated curriculum development
Curriculum development was identified as critical to improving preparation of students in both science and math at the Outreach Institutions. INBRE-1 funded faculty release time and travel to attend workshops for curriculum development or release time to develop new science curricula; each institution modernized its curriculum significantly as a result.

2. Facilitated articulation of science courses between 2- and 4-year colleges
Historically, there were numerous impediments for students transferring from a 2-year to a 4-year college because of significant differences in curricula at each institution. Via teleconferencing and a statewide meeting, faculty worked to design biology curricula that were consistent between institutions, allowing students at 2-year colleges to more readily complete their baccalaureate degrees at an Idaho 4-year institution.

3. Added bioinformatics to the curriculum
Similar to the Research Partner Institutions, the faculty at the Outreach Institutions have access to bioinformatics facilities/support on their campuses and participated in bioinformatics workshops at the Annual Idaho INBRE Summer Research Conference. For large bioinformatics projects, all faculty had access to the computer facility at BSU or the UI, without charge. Like all institutions in the Network, the Outreach schools included bioinformatics in one or more courses that included biology, forensic sciences and computer science courses, demonstrating the interdisciplinary nature of its use. This major modernization of the curriculum had a dramatic affect as an ever increasing number of courses incorporated bioinformatics at all Idaho INBRE Institutions (FIG. 11). Existing classes using bioinformatics...
continued to incorporate new examples to more lectures. The effect of INBRE’s initial investment to sustain this change was realized at NIC, where the board of trustees plans to fund the development of a new bioinformatics curriculum.

4. Increased undergraduate student participation in biomedical research
None of the Outreach Institutions (except LCSC) had research on their campuses; nonetheless, they created or enhanced programs to place students in research laboratories, local biotechnology and other industries, or health care facilities in the community for 10 weeks in the summer through the INBRE Internship Program (see Goal 3, point 1, above).

5. Provided laboratory equipment improvements.
INBRE funds provided state-of-the-art laboratory facilities for science courses. For example, as LCSC, rotary evaporators, UV/vis and Fluorescence spectrometers, GC mass spec, HPLC, FTIR, 60 MHz NMR, and a lyophilizer were purchased. See Appendix D, on CD for a list of laboratory equipment.

6. Increased participation in K-12 science and math
The Outreach Institutions played a major role in this Pipeline activity. See Goal 3, points 4 and 5, above.

Progress towards Goals 1, 2, 3, and 4 combined had an overall outcome of increasing the number of undergraduate students pursuing science and health-related careers in Idaho. Figure 12 shows the increase since 2004. Likewise, progress towards all four Goals has increased the number of faculty participating in research activities. The Research Partner and Outreach Institutions have experienced a cultural shift. They are linked into the Idaho Network that has provided enhancement to biomedical research infrastructure, curriculum modernization, greater collaborative opportunities for faculty in teaching and research, access to scientific seminar programs, and career development opportunities.

Progress towards Goal 5 Enhance the Scientific Knowledge of the Workforce
Enhancing the scientific knowledge of the Idaho workforce was addressed on several levels. Outlined below (1-2) are specific activities and measureable outcomes from the Idaho Network that included presentations to the public, to industry, and to the state legislature:

1. Organized talks and mini-courses to disseminate biomedical information to the public
The Network Outreach Institutions offered public lectures on a variety of topics that were very popular. For example, NIC sponsored a series of seven annual “Health Talks” that averaged 58 participants per event. BSU supported the annual Mini-Medical School Program. This series of 5 public presentations extend over five weeks focused on one medically relevant topic each year such as cancer, heart disease, digestion, etc. Public participants enrolled in the course and “graduated” if they attended all presentations. A basic science presentation was followed by clinical ‘grand rounds’ on the topic, and concluded with the latest advances from biomedical research in the field. The general audience was limited to about 100 participants and was very well-liked with enrollment capped each year. INBRE sponsored the ‘Science-on-Tap’ series in which experts gave talks in a local restaurant pub. This venue captured not only audiences that planned to attend, but also people who, "found themselves in the midst of a scientific talk" when they were “just going out to eat”. Since 2005, ISU has conducted workshops and training sessions, and served as research consultants, throughout SE Idaho, including at USDA-ARS, DOE-INL, and several private companies (see Appendix E, on CD for a list of the Public Biomedical Presentations)
2. Gradually developed Idaho's biomedical industry.
An ambitious, but essential objective of Goal 5 was to help develop a significant biomedical research industry in Idaho. Two strategies were employed during INBRE-1:

- Interacted with Idaho's U. S. Congressional delegation to promote biomedical research and education. Only returned overhead funds were used for activities involving politicians. Congressional staffers were invited to a UI lab (Dr. C Bohach) to sequence their own DNA. The participants learned a technique to isolate DNA from cells, PCR, and electrophoretic gel separation of DNA. They went home with a scanned picture of a portion of their DNA sequence. This experience focused on the impact of biomedical advances. Before attending a NISRE Scientific meeting in Washington D.C., one student and one faculty representative from every Idaho INBRE Network institution (all 10) met with Idaho's Federal Senators and Congressmen to discuss the impact of INBRE on biomedical research and education. This was a red-letter experience for the Idaho students many of whom had never travelled outside of Idaho before. Also, faculty and students met with state Congressmen on their campuses to emphasize the importance of biomedical research to Idaho's future.

- Invited biomedical/pharmaceutical company representatives to participate in a symposium. This event had an unanticipated outcome and resulted in Idaho's first biomedical technology organization called Bioldaho. Chartered as a 501(c)(6) organization under the State of Idaho, Bioldaho's board represents all biotech businesses, universities, governmental representatives and investors. INBRE was a major supporter of the development of this organization with the Director (MB Laskowski) as the first chairman of the board. Important tax-relief legislation resulted in promotion of the state's biotech industry. Participation in the national BIO meetings increased visibility of Idaho's unique niche in the biotech industry. Idaho's first biomedical research institute was established at ISU and there are discussions to start a Biomedical Research Center at the VA Medical Center that will house faculty from three institutions: UI, ISU, and BSU.

Evaluation During INBRE-1
During BRIN/INBRE-1 formative and summative evaluations of the Idaho Program were routinely performed for the required Annual Progress Reports. Two years into the INBRE-1 Program (April 2006), a review by extramural faculty with expertise in each main emphasis area of the Idaho INBRE Program was commissioned to assess our progress during the first two years and to recommend changes to meet our goals. Experts in our "Cell Signaling" research theme (Dr. L Weber, University of Nevada), Pipeline Programs (Prof. C Garcia, Univ. of Washington) and Evaluation (Dr. C Scott, Univ. of Washington) visited every partner campus and met with students, faculty, and administrators to assess the "State of the Idaho INBRE" after two years. The report by this commission and their recommendations enabled revision and refocusing during the second half of the Program (see Appendix F, on CD for the Extramural Review Recommendations and Response)

End of Progress Report
Research Design and Methods
This application for continuation of the IDEa INBRE in Idaho is a collaborative effort of Research Intensive Institutions to sponsor research with BS/MS-granting institutions (Research Partner Institutions) and two- and four-year colleges (Outreach Institutions). **Five Specific Aims** are developed to enhance the established Idaho **Network** by strengthening the programs that have been especially productive in research, bioinformatics, capacity building, and science education. Each component of the plan includes “sustainability” strategies to carry on what the NIH has built in Idaho once the INBRE program sunsets in 2014. The Presidents of all participating institutions have provided letters with up-front commitments to continue specific programs on each campus and the UI letter includes plans for a legislative initiative to establish an inter-institution biomedical research network patterned after the INRBE model (see Letters of Support, pages 333-348). Table 3 summarizes the commitments. Thus, the transformations towards competitiveness initiated by the INBRE program will have an enduring impact on biomedical research and training in Idaho.

Table 3. BEYOND 2014: Sustaining INBRE-Sponsored Advancements in Biomedical Research

<table>
<thead>
<tr>
<th>Commitment</th>
<th>UI</th>
<th>ISU</th>
<th>BSU</th>
<th>CI</th>
<th>NNU</th>
<th>LCSC</th>
<th>BYU</th>
<th>CSI</th>
<th>NIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Biomedical Building</td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renovation/Expansion of Space</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research Infrastructure</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>New Faculty</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Faculty Development</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Post-doc support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Graduate student support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Undergraduate Research Support</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Curriculum Development</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Salary lines</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>New online access to library journals</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Science Outreach</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Specific Aim 1: To strengthen Idaho’s biomedical research infrastructure and expertise by building on the established INBRE Network with the scientific theme of “Cell Signaling”. The research theme, “Cell Signaling”, established in INBRE-1, will continue because it is sufficiently broad to include the majority of the most productive researchers, yet specific enough to define an area of emphasis to recruit faculty and build graduate training programs. “Cell Signaling” also readily lends itself to interdisciplinary collaborations and bioinformatics analyses. **Seven actions (1.1-1.7, below)** will accomplish Specific Aim 1 and include structuring committees, providing research infrastructure, enhancing bioinformatics, and systematic summative and formative evaluation to sustain the Idaho **Network**.

1.1. Maintain the Established Idaho INBRE Network.
The INBRE-2 Idaho Network will include 10 institutions (Table 4) and will not change from that developed during INBRE-1. See Figure 1, page 308, for locations of participants in Idaho. The research intensive UI will be the awardee institution and will subcontract with the other institutions. Memoranda of Understanding (MOU) have been executed to clearly describe the arrangements.

Table 4. Idaho INBRE Network Institutions with Abbreviations

<table>
<thead>
<tr>
<th>Research Intensive</th>
<th>Research Partner</th>
<th>Outreach</th>
</tr>
</thead>
<tbody>
<tr>
<td>UI - University of Idaho</td>
<td>BSU - Boise State University</td>
<td>BYU - Brigham Young Univ.-Idaho</td>
</tr>
<tr>
<td>ISU - Idaho State University</td>
<td>CI - The College of Idaho</td>
<td>CSI - College of Southern Idaho</td>
</tr>
<tr>
<td>NNU - Northwest Nazarene University</td>
<td>LCSC - Lewis-Clark State College</td>
<td></td>
</tr>
<tr>
<td>VA - The Boise VA Medical Center</td>
<td>NIC - North Idaho College</td>
<td></td>
</tr>
</tbody>
</table>
The UI and ISU are research intensive institutions offering PhD degrees in biomedical sciences. The research Partner institutions are primarily undergraduate teaching institutions with developing research programs. The Outreach Institutions are 2 and 4-year schools where teaching excellence is the primary mission (see Appendix G, on CD for brief descriptions of each Network Institution).

1.2. Maintain the Administrative Core and Build for Sustainability
The Administrative Core will provide logistical support for the Network by (i) facilitating systematic communication among investigators, (ii) providing training and mentoring for faculty and students, (iii) overseeing research activities in “Cell Signaling” and (iv) assuring investigator access to state-of-the-art research facilities. The four-member Administrative Core will remain the same as INBRE-1:

- **Carolyn Hovde Bohach (Carolyn J. Hovde), PhD**, as the PI/Director, a position she has served in since 2006. Dr. Bohach has strong scientific credentials as an established, internationally recognized, biomedical research scientist in microbial infectious disease (cell signaling) with R01/R01-like funding since 1991 focused on Escherichia coli O157:H7 and Yersinia pestis. She has administrative experience as the current Idaho INBRE Program Director and previous to that, the BRIN/INBRE Program Coordinator from 2000 to 2006.

- **Michael B. Laskowski, PhD**, as the Program Coordinator, a position he has served in since 2006. Dr. Laskowski has a strong record as a biomedical research scientist in nerve development and regeneration, (cell signaling) funded by an NIH R01 grant for 15 consecutive years. He has broad administrative experience as the previous PI/Director of the Idaho BRIN/INBRE-1 and as the Director of the WWAMI (Washington, Wyoming, Alaska, Montana, and Idaho) Medical Program at the UI/Washington State Univ. site for 17 years. His primary responsibility will be to assist the PI/Director and guide the mentoring activities for junior investigators to develop sustainable research programs.

- **Leslie Thompson**, as the Administrative Coordinator, a position she has served in since 2008. Ms. Thompson has a decade of experience in program coordination and grants management. Her primary responsibility will be to assist the PI/Director and Program Coordinator in all INBRE activities.

- **Margaret Ricci, MS** as the Evaluator, a position she has served in since 2007. Previous to this, Ms. Ricci was the BRIN/INBRE Outreach Coordinator from 2000 to 2007 an experience that familiarized her with each Idaho institution. Her primary responsibility will be to coordinate assessment by collection and analysis of data associated with INBRE activities.

1.3. Maintain and Build Committees Overseen by the Administrative Core
Six committees, overseen by the Administrative Core, will include a Statewide Steering Committee (SC), an External Advisory Committee (EAC), a Senior Advisory Research Committee (SARC), a Bioinformatics Core Committee, an Outreach Committee, and an Idaho Biomedical Research Board (IBRB). Figure 13 outlines the relationship between committees.

FIG. 13. INBRE-2 Planned Committee Structure

- **Administrative Core**
 - PI/Director (CH Bohach)
 - Program Coordinator (MB Laskowski)
 - External Advisory Committee (EAC)
- **IBRB**
 - Idaho Biomedical Research Board
- **Statewide Steering Committee (SC)**
 - Chair (CH Bohach)
 - Members: Bohach, Laskowski, Thompson, Ricci
- **SARC**
 - Senior Advisory Research Committee
 - Chair (MB Laskowski)
 - Members: Bohach, Laskowski, Thompson, Ricci
- **Outreach Committee**
 - Chair (MB Laskowski)

a. Statewide Steering Committee (SC). The Statewide Steering Committee (SC) will establish the policies and operating procedures of the Idaho INBRE Network, oversee the development of relevant workshops, lecture series, review the progress of mentoring teams, and design an evaluation plan. The 15-member SC will be chaired by the PI/Director, (CH Bohach) and will include a representative(s) from each Research Intensive, Research Partner, and Outreach Institution. The ongoing continuity of the Idaho Network is demonstrated by the SC membership which remains the same as in INBRE-1.
The SC will meet at least 3 times during the first year of INBRE-2 and at least semi-annually, thereafter. The SC members will be:

- Carolyn H. Bohach, PhD, PI/Director (see above)
- Michael B. Laskowski, PhD, Program Coordinator (see above)
- John (Jack) McIver, PhD and UI Vice President for Research.
- James A. Foster, PhD, Director of the statewide Bioinformatics Core (see below).
- T. Rhena Cooper, MS, Outreach Coordinator, NIC (see below).
- Christopher K. Daniels, PhD, Research Intensive ISU, Director of the ISU Biomedical Research Institute and an established biomedical investigator with expertise in cell signaling.
- Ann Koga, PhD, Research Partner Institution, CI, and Professor and Pre-Health Advisor in Biology
- Dan F. Nogales, PhD, Research Partner Institution, NNU, and Dean, School of Health and Science.
- Richard D. Olson, PhD, Research Partner Institution, VA, and an NIH-funded investigator specializing in cardiovascular pharmacology and cardiotoxicity (cell signaling).
- Julia T. Oxford, PhD, Research Partner Institution, BSU, and Professor of Biology, NIH-funded Investigator with expertise in cartilage and bone development (cell signaling).
- Steve D. Christenson, PhD, and Todd Kelso, PhD, Outreach Institution, BYUI, both are Professors of Biology
- Matthew A. Johnston, PhD and Jane S. Finan, MS, Outreach School, LCSC, Dr. Johnston is Division Chair, Natural Sciences and Mathematics and Professor Finan is in Biology.
- Mark A. Sugden, PhD and Amy Rice-Doetsch, PhD, Outreach Institution, CSI. Dr. Sugden’s Instructional Dean and Professor of Biology and Dr. Rice-Doetsch is a Professor in the Biology.

b. External Advisory Committee (EAC). The External Advisory Committee (EAC) will provide scientific expertise in “Cell Signaling”, advice to the SC and PI/Director on scientific and administrative matters, and monitor the progress of the Idaho Network towards competitiveness and sustainability. The members have been selected for their scientific expertise, experience with mentoring, grantsmanship, and expertise in building sustainable research programs. The EAC will meet at least twice per year and summaries of recommendations made and actions taken will be included in annual progress reports to the NIH NCRR. To provide continuity from INBRE-1, two EAC members will remain and others will be new (see EAC Letters pages 349-354):

- Lee A. Weber, PhD (continuing) Professor Emeritus, University of Nevada at Reno. Dr. Weber is a molecular biologist with expertise in structure and expression of human stress protein genes and the function of the heat shock proteins in stress resistance. He has a history of NIH R01 funding and was the Director of the Nevada INBRE until 2007.
- Beulah Holmes Gray, PhD (continuing) Professor Emeritus, University of Minnesota. Dr. Gray is an immunologist with expertise in the innate immune response and oxidative and non-oxidative killing by human polymorphonuclear leukocytes and has a history of NIH R01 funding.
- Mitchell J. Brittnacher, PhD, (new), Principal Research Scientist, Department of Genome Science, Univ. of Washington. Dr. Brittnacher is an expert in bioinformatics and has a history of NIH R01-like funding.
- Robert Hoover, PhD (new), former President of CI as well as UI. Dr. Hoover brings a unique perspective, having been president of a research intensive university (UI), as well as an outreach college (CI); both in the Idaho INBRE. Dr. Hoover’s strong leadership perspective will guide and strengthen collaboration between both ends of the research culture and among all participating institutions in Idaho.
- Teresa M. Koehler, PhD (new), Herbert L. and Margaret DuPont endowed Professorship in Biological Science in the department of Microbiology and Molecular Genetics, University of Texas Houston Medical Center. Dr. Koehler is a microbiologist with basic and applied research programs in genetics, physiology, and host interactions of Bacillus anthracis and has had continual NIH R01 funding since 1992.
- Guy H. Palmer, DVM, PhD, (new) Diplomate, American College of Veterinary Pathologists, Professor of Microbiology and Pathology, Chair of the Graduate Studies Program, Director of the NIH Immunology Training Program in the College of Veterinary Medicine and the School of Molecular Biosciences, Washington State Univ. Dr. Palmer is an immunologist, member of the National Academy of Science, and has and continual NIH R01 funding since 1986. His research is focused on antigenic variation of vector-borne pathogens at both the in-host and population levels.
c. Senior Advisory Research Committee (SARC). Established during INBRE-1, this statewide committee will specifically oversee the research activities of the Idaho Network by (i) advising the Director on the distribution and use of resources related to research throughout Idaho, (ii) monitoring mentoring relationships, (iii) reviewing the non-competitive renewals of the INBRE-funded investigators (see Aim 2, below), and (iv) overseeing the appointments of new faculty participants. The SARC will consist of senior researchers with strong records of publication and extramural grant support under the theme of “Cell Signaling”. The eight-member SARC will include CH Bohach, PhD (UI; INBRE Director), the PI's of Idaho's two UI COBRE grants, Gregory A. Bohach PhD and Larry J. Forney, PhD, and four NIH-R01 or R01-like funded investigators, Patricia L. Hartzell, PhD (UI), James C. K. Lai, PhD (ISU), Dennis L. Stevens, MD, PhD (VA), JT Oxford, PhD (BSU). The Program Coordinator, MB Laskowski will chair the SARC and it will meet at least twice yearly.

d. Outreach Committee
The Outreach Committee will coordinate the pipeline to graduate education and educating the workforce activities across Idaho (see Specific Aims 2 and 4, below). It will strengthen the Network in the 2- and 4-year colleges in Idaho to promote biomedical research opportunities for students and faculty. TR Cooper, MS will continue as the Outreach Coordinator/Committee chair, a position she has served in since 2007. Professor Cooper has more than a decade of experience teaching microbiology/biology at NIC and developing outreach and undergraduate student research opportunities in the community. This Committee will be comprised of CH Bohach, PhD (UI; INBRE Director) and representatives from each Outreach Institution: A Rice-Doetsch, PhD (CSI) and MA Sugden, PhD, (CSI), MA Johnston, PhD, (LCSC) JS Finan, MS (LSCS), and SD Christenson, PhD (BYUI). The Committee will meet regularly via teleconference and at least yearly in person.

e. Bioinformatics Core Committee
The Bioinformatics Core Committee will provide strategic, scientific, and educational input for bioinformatics resources across Idaho. JA Foster, PhD will continue as the Director of the statewide Bioinformatics Core (see below) and the Chair of this committee. Dr. Foster is the PI of the UI NSF EPSCoR Computing Center, is Co-PI on the COBRE Grant “Evolutionary Ecology,” and Director of the Bioinformatics and Computational Biology Graduate Program. The Bioinformatics Core Committee will be comprised of CH Bohach, PhD (UI: INBRE Director) and representatives from the Research Intensive Institutions, Celeste Brown, PhD (UI) and Michael A. Thomas, PhD (ISU); the Research Partner Institutions: G. X. Yu, PhD and Laura Bond (BSU), A Koga, PhD (CI), Xueyi Wang, PhD and Barry L. Myers (NNU) and representatives from the Outreach Institutions: MA Johnston, PhD (LCSC), A Rice-Doetsch (CSI), T Kelson, PhD (BYUI) and TR Cooper, MS (NIC). The Committee will meet regularly to share expertise, tools, and best-practices.

f. Idaho Biomedical Research Board (IBRB).
The mission of the Idaho Biomedical Research Board (IBRB) will be to develop statewide strategies to sustain key elements of the biomedical research Network patterned after the INBRE model. The IBRB will be comprised of prominent academic, business, and political leaders in Idaho with an interest in growing the biomedical research enterprise. They will meet quarterly and will have statewide representation of key stakeholders.

1.4. Enhance Training and Mentoring
The Administrative Core and the Committees outlined above, will oversee and facilitate the specific training and mentoring activities that will include workshops on grantsmanship, scientific presentation, manuscript writing; seminar series; visiting scientists; career counseling; graduate school recruiting; and the statewide Annual Idaho INBRE Summer Research Conference. Activities are detailed in Specific Aims 2-4, below.

1.5. Maintain and Expand Shared Research Facilities
An integrated statewide system of Research facilities that includes three Research Core Laboratories, statewide Bioinformatics Facilities, and a Research Vivarium was developed and enhanced by BRIN/INBRE-1 and will be maintained and strengthened. Access to these shared resources will be facilitated and full-time expert technical assistance will be provided. User fees will be waived or paid for INBRE faculty and students. The cost of reagents and other materials will be met by the investigator through small faculty development
seed grants so that faculty, postdocs, or students need only provide funds for consumable supplies. Additionally, researchers from all the Western IDeA states will be invited to use these facilities (Specific Aim 5). See Appendix B, on CD for descriptions of the Research Core Labs and Bioinformatics Facilities.

Idaho INBRE-COBRE interactions are intertwined in much of the research infrastructure on the UI campus because it has been built through partnerships between INBRE and two COBRE Programs, *Host-Pathogen Interactions* (GA Bohach, PI) and *Evolutionary Biology* (LJ Forney, PI). The synergy between all three programs has leveraged the funds to provide excellent Research Core Facilities that are open to all biomedical investigators statewide. Interactions will continue and resources will be shared through scientific collaborations formed within the **Network** and also across the Western IDeA Region (See Letters of Support, pages 355-358 and Specific Aim 5).

1.6. Maintain and Expand the Bioinformatics Core

The Bioinformatics Core established technological and human resources that support biomedical research in Idaho. Bioinformatics is incorporated into activities at various levels on every Idaho campus as evidenced by separate INBRE bioinformatics budgets by most **Network** institutions. To maintain critical mass in three types of bioinformatics analyses used in "Cell Signaling" research, areas of emphasis will continue in (i) evolutionary analysis (UI), (ii) gene expression analysis (ISU), and (iii) protein structure analysis and proteomics (BSU). UI will host local databases and a distributed cluster computer for statistical modeling and phylogenetic estimation. ISU will host a distributed cluster computer and software tightly integrated with their high throughput sequencing facility. BSU will host a distributed cluster computer and software tightly integrated with their mass spectrometer facility.

Each facility will be available to faculty and students in every state institution via high-speed telecommunications. The high-end computing hardware will remain available to all INBRE participants through secure internet connections and access to state-of-the-art analytical software, and experts will provide specialized help as necessary. The facilities received COBRE (UI) or instrumentation (BSU, ISU) awards, substantial material support from each university administration, and support from individual NIH and NSF research awards. In particular, a UI COBRE (LJ Forney, PI), which was recently renewed for five years, will fund additional processing capacity for cluster computing.

Bioinformatics hardware and software needs will be optimized statewide for educating and training students and faculty in best-bioinformatics-practices and providing access to specialized high performance computing. Planned upgrades include, at UI, power supplies, servers and cluster nodes, increase disk storage capacity, and transfer of all bioinformatics system administrators to permanent Idaho State salaries; at ISU, computing nodes and data storage and building an integrated bioinformatics teaching/research facility; at BSU, integrating a new mass spectrometer and software, adding two general-purpose servers, increasing data storage capacity, expanding cluster computing capacity, and supporting additional staff on a permanent state line. BSU will also significantly enhance its telecommunications connections by leveraging INBRE funds with NSF instrumentation awards, institutional support, and service fees in individual grants.

The Bioinformatics Core will continue faculty/student training and education: **Professional training:** C Brown, PhD (UI), MA Thomas PhD (ISU), and G Yu, PhD (BSU) will continue to provide research-specific help and training. This includes both ad hoc help for scientists with specific questions, and periodic workshops and short courses open to all INBRE participants. **Graduate education/training:** UI will continue to offer an MS/PhD program in Bioinformatics and Computational Biology, as it has since 2003. **Undergraduate education:** All Institutions in the **Network** will continue to integrate bioinformatics into existing and new courses, and to integrate bioinformatics education with research. ISU and BSU will develop a shared baccalaureate degree program in bioinformatics. INBRE will continue to develop bioinformatics exercises and integrate them into undergraduate classes. INBRE institutions will maintain and continue to use local and remote bioinformatics servers for hands-on undergraduate student education. All institutions will continue to participate in undergraduate research projects and workshops. The undergraduate and graduate programs
have been designed to articulate seamlessly, so that the mos: promising baccalaureate graduates can advance their education through the PhD degree in Idaho.

1.7. Develop an Evaluation Plan
Evaluation will be done to assess the effectiveness of the approach to meet the goals of the statewide Network. In conjunction with the SC and the EAC the Administrative Core will set benchmarks for recruitment and retention of outstanding faculty and students; modernization of curriculum; and access to and use of Research Core Facilities. Summative and formative evaluations will assess the quality and number of students, the productively of the mentors and investigators, and the impacts of community educational opportunities on the workforce. This and research data will be shared in accordance with NIH policy.

Formative evaluation will be provided to individual investigators by their mentors and the SARC through monitoring of their progress in periodic meetings throughout the year. Focus will be placed on the generation of preliminary data needed to submit grants and the organization and submission of manuscripts to be submitted for publication. Summative evaluations of INBRE-funded investigators will occur through a non-competitive renewal process (See Specific Aim 2) that will include the achievement of specific milestones and will assess investigator productivity. Expectations will vary for each level of research participation but all INBRE-funded investigators will be expected to publish high quality papers, disseminate their research results in seminars and/or at national meetings, and actively participate in the training students. These criteria will be evaluated at each biannual EAC-SC meeting. Funding for INBRE investigators that are failing to meet these expectations, despite receiving adequate mentoring, will be discontinued following a one year warning period.

An independent external evaluation will be done at the end of the second year of funding to assess the effectiveness of the Network Programs. A formal review report will be created and shared with the Administrative Core and the EAC. Review recommendations and the Idaho INBRE responses, including plans for corrective measures, if needed, will be reported to NCRR.

Specific Aim 2: To provide support to Idaho faculty, post-doctoral fellows, and graduate students to increase the research base and capacity.
Seven actions (2.1-2.7, below) will accomplish Specific Aim 2 and include increasing faculty participation in research at the Network Partner Institutions, setting expectations, providing and monitoring mentoring, providing faculty development opportunities, supporting graduate students and post-doctoral fellows, and increasing biomedical research interactions across the Network and with a Clinical Translational Science Award (CTSA) institution.

2.1. Increase Faculty Participation in Research
Although stated in the INBRE FOA, “Attaining R01 support is not a criterion for evaluation of investigators at primarily undergraduate institutions”, funding is critical to sustaining a research program. Therefore, plans for participation in research and pathways to NIH funding were designed to foster team and individual faculty research with the goal of winning grant awards. Varied levels of research participation were developed to encourage many faculty to participate and to increase interactions between established and developing researchers. Mentoring towards measurable outcomes of publications, presentations, and grant awards is an important strategy for sustainability.

Research projects and participants were selected for this renewal application by a simple RFA mechanism with open competition that allowed new as well as previously INBRE-funded investigators to apply. The “Idaho INBRE RFA” was released in December of 2007 (see Appendix H, on CD for the Idaho INBRE RFA). Two-page pre-proposals were due in late January 2008. Faculty applied for one of four levels of research participation, each with a pathway towards an NIH award and ample opportunities for undergraduates to participate in research. Table 5 below outlines the participation levels. The Program Leader category allows established research faculty to develop and mentor teams of researchers focusing on a theme with the goal of an NIH R01 award. This plan brings less experienced faculty in contact with a seasoned researcher. Likewise, the Co-investigator and Student-Research Mentor categories allow faculty who primarily teach in the classroom to become involved in ongoing research projects with more experienced research faculty.
Program Director/Principal Investigator (Last, First, Middle): Bohach, Carolyn H.

Forty-seven (47) applications were received, externally reviewed, and scored. From these, a subset of applicants was invited by the SARC to complete full 10-page proposals (3 page proposals for Co-investigators). These proposals were reviewed externally, again, and the nine receiving the highest scores are included in this application as proposed Investigator Research Plans (See pages 364-500 and note: Student Research Mentor plans are not included). Interestingly, this process identified a mix of 14 new and 8 previously-INBRE-funded faculty, a progression that increased the number of participants. Future applicants will be considered using the same review process. This approach facilitated the formation of natural collaborations among the Idaho institutions, many of which would not have happened without the partnerships created during INBRE-1.

Table 5. Levels of Faculty Research Participation in INBRE-2

<table>
<thead>
<tr>
<th>Title</th>
<th>Research Interactions</th>
<th>Goal</th>
<th>Effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program Leader</td>
<td>(equivalent to the NIH Project Investigator), senior individual with previous NIH or equivalent support; mentors a team of Junior Investigators from Research Partner Institutions</td>
<td>NIH R01</td>
<td>Weekly meetings Mentoring Coordinates project</td>
</tr>
<tr>
<td>Investigator</td>
<td>Works independently or with Co-investigators (below)</td>
<td>NIH R01, R15, or R03</td>
<td>Research – 75% Teaching – 25%</td>
</tr>
<tr>
<td>Co-Investigator</td>
<td>Collaborates with Program Leader, Investigator (see above), or mentor outside of Idaho</td>
<td>NIH R01, R15, R21 or R03</td>
<td>Research – 50% Teaching – 50%</td>
</tr>
<tr>
<td>Student Research Mentor</td>
<td>Works with undergraduate students. Research projects can be independent or collaborative with a Program Leader or an Investigator.</td>
<td>Present research at national meeting and publish a peer-reviewed scientific paper</td>
<td>Research – summer Teaching – full-time</td>
</tr>
</tbody>
</table>

Important aspects of the research plans selected for this renewal application were appropriate time commitments to research activities and appropriate budget requests to accomplish the proposed work. Idaho standards for 50% research commitment require faculty at the primarily undergraduate institutions to teach two lecture courses/semester with all accompanying multiple laboratory sections (without technical/prep help). This level of teaching is inconsistent with developing a new research program. Therefore, research commitment level for the “Investigator” category was re-defined in Idaho as 75% which equals teaching one course/semester. Figure 14 outlines the proposed research faculty showing the rich internal and cross-institution collaborations that are planned (collaborations/mentoring outside of Idaho are not shown).

FIG. 14. Research Interactions across the Idaho Network

![Diagram of research interactions](image)

2.2. Facilitate and Monitor Faculty Mentoring

Mentoring is the most important catalyst for developing young faculty into productive, competitive, independent investigators able to coordinate a research program. A strategic plan for mentoring will be patterned after the successes of INBRE-1. Faculty (FIG. 14) applying to participate at the various levels outlined in Table 5 have developed Investigator Research Plans that identify a scientific mentor(s) with specific project expertise (see Research Plans, pages 364-500).

The mentoring process will begin with a meeting between the INBRE
Program Coordinator (MB Laskowski), each INBRE researcher, and the identified scientific mentor(s). The goal of the scientific mentoring relationship will be to guide the investigator toward applying for and receiving an NIH award or, as appropriate, for the individual to contribute towards a grant application. Mentor activities will include reviewing drafts of publications and grant application, teaching new techniques if applicable, and assisting in resubmission if necessary. The Program Coordinator (MB Laskowski) will facilitate and monitor interactions between Mentor and junior faculty throughout the course of the award to assure mutual satisfaction. A key to success will be that the mentor develops a vested interest in the success of the INBRE researcher. Thus, opportunities for collaboration, co-authorship of publications, and writing a grant application with roles for each party will encourage mentors to devote the necessary time and effort to the junior investigator's success. Mentors may also be compensated monetarily according to NIH guidelines. Mentoring will also be monitored through investigator's semi-annual face-to-face meetings with the SARC. A final important component of the mentoring process will be monthly networking meetings to bring INBRE-funded faculty together to discuss their successes and challenges as the work towards developing research programs. These meetings provide the venue for great peer-support and peer-mentoring. Mentoring activities and the mutually beneficial potentials are outlined in Table 8. Thus, through interactions with a scientific mentor, the INBRE Program Coordinator, the SARC, and peers, the young investigators will move at a measured pace toward their goals.

Table 8. Mentoring Activities

<table>
<thead>
<tr>
<th>Scientific Mentor</th>
<th>Vested Interest</th>
<th>SARC</th>
<th>Peers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assist in developing research plan</td>
<td>Collaboration</td>
<td>8-annual meeting</td>
<td>Monthly meeting</td>
</tr>
<tr>
<td>Review drafts of publications</td>
<td>Co-authorship: Manuscripts</td>
<td>Evaluate expectations</td>
<td>Support</td>
</tr>
<tr>
<td>Teach a new technique</td>
<td></td>
<td>Monitor success</td>
<td>Offer solutions</td>
</tr>
<tr>
<td>Review specific aims</td>
<td></td>
<td></td>
<td>Collaborate</td>
</tr>
<tr>
<td>Review drafts of grant applications</td>
<td>Co-submissions: Grants</td>
<td></td>
<td>Commiserate</td>
</tr>
<tr>
<td>Assist in resubmission if necessary</td>
<td></td>
<td></td>
<td>Celebrate</td>
</tr>
</tbody>
</table>

2.3 Set Productivity Standards

Based on the success of a similar approach in INBRE-1, Productivity Standards will be set for each category of research participation (See Appendix I, on CD for Productivity Standards, Tables I-1 to I-4). Shown in Table 7, as an example, are the Productivity Standards for the Idaho INBRE “Investigator” level of research participation. An important element of these standards is an annual “non-competing renewal,” patterned after the NIH format. All INBRE-supported researchers will be expected to submit annual progress and requests for continued funding to the SARC. Funding for INBRE investigators that are failing to meet expectations, despite receiving adequate mentoring, will be discontinued following a one year probationary period.

Table 7. Productivity Standards

<table>
<thead>
<tr>
<th>Idaho INBRE Investigator</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participate in weekly networking meetings</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Meet with Senior Advisory Research Committee (SARC) representatives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hire a technician</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Present research at national/international meeting</td>
<td></td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Submit a manuscript to a refereed journal of high impact</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Identify a Scientific Mentor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meet with Scientific Mentor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plan for an R15, R22, R03, or R01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write R15, R22, R03, or R01, have it reviewed by INBRE-paid reviewer</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Submit grant to NIH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If R01 funding is obtained, graduate off INBRE funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>If unfunded, review with scientific mentor, address all reviewers comments and resubmit an R15, R22, R03, or R01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-package grant for submission to other agencies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Continue efforts to supplement INBRE funding with NIH or other funding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submit a non-competing renewal package to the SARC</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
2.4. Facilitate Faculty Participation in Biomedical Research

INBRE will provide opportunities to enhance individual and interdisciplinary biomedical research competitiveness across Idaho. The most promising research faculty will be identified through competitive application processes to allocate resources for faculty development. All initiatives are presented here, but will be administered separately at each institution. Also, because no single approach addresses the needs of all faculty, each institution may not necessarily provide all listed options.

Summary of Faculty Development Initiatives:

- **Seed Grants** to fund research to acquire preliminary data/expertise for future external grant applications.
- **Teaching Release** to increase the time available for research, including academic year release from teaching assignments and summer salary for research. Related to this opportunity is the difficulty in attracting qualified personnel willing to teach one or two highly specialized courses. This challenge will be met with a ‘Post-doctoral Science Educator’ position to be shared among the Research Partner Institutions (all within 25 miles radius) so that a single more desirable full-time position can be recruited.
- **Bridge-funding** to support scientifically meritorious but un-funded projects.
- **Seminars** to bring Idaho faculty to other Idaho Institutions and/or to bring outside speakers to Idaho. Seminars will bring new knowledge, idea exchange, exposure to new topics, and scientific collaborations.
- **Mini-Sabbatical Program** to provide 1-4 months in salary, travel, and housing to support activities to acquire new research skills, develop pilot data for an NIH grant proposal, energize a career, or reach the underserved populations in Idaho.
- **Visiting Scholars Program** to increase the critical mass of researchers in a particular area by bringing experts from outside Idaho for a 1- to 4-week stay to coordinate special techniques workshops, work as collaborators, interact with students, or give public seminars.
- **New Faculty Recruitment** to supplement funding for faculty recruited to Idaho institutions by contributing to start-up packages. Emphasis will be placed on recruiting individuals who can specifically participate and contribute to the ‘Cell Signaling’ theme.
- **Mentoring Program** to enable any new investigators or mid-career faculty with excellent research potential in Idaho to work closely with an established scientific research Mentor.
- **Training in Grant Writing** for both individual and multidisciplinary research teams on campuses and between campuses across Idaho (see Dr. S Shadle Letter of Support, page 362).
- **Training in Manuscript Preparation** to facilitate successful publication in high quality scientific journals.
- **Training in Budget Preparation** to facilitate grant applications.
- **Training for Grant Management Personnel** to enhance the research capacities at Institutions that have not had a tradition of grant awards.

2.5. Facilitate Graduate Education

INBRE will enhance the number and quality of graduate students in Idaho. At the UI, two new interdisciplinary doctoral programs were developed with INBRE-1 funding and are now supported by the UI Research Office. Graduate student support will continue through a competitive process that will select the most promising students in the best educational environments to assure success. INBRE support for graduate students in the Bioinformatics and Computational Biology program will continue. At ISU, INBRE graduate assistantships and national travel awards will be assigned competitively. At BSU, the first PhD program in Biomolecular Sciences is being developed. BSU has approved five new faculty lines and an interdisciplinary curriculum. The first cohort of PhD students is expected in fall 2010 and INBRE funds at BSU will support four of these graduate assistants with additional assistantships provide by the BSU Research office.

Graduate programs supported by INBRE will be monitored for the number and quality of student applicants and participants. Strategies will be developed to increase the quality of applicant pools. Students sponsored by INBRE will be mentored and annual feedback from both student and mentor will be required to assess progress and assure successful educational experiences. Undergraduate awareness of Idaho Graduate programs will be enhanced through invited seminars by faculty from the Research Intensive Institutions to all campuses.
2.6. Increase Postdoctoral Fellowships
INBRE will invest in the "end of the Pipeline" post-doctoral training (See Specific Aim 3, below) because it is critical to the intended goal of developing the next generation of biomedical researchers. The following initiatives will enhance post-doctoral training in Idaho and will be administered separately at each institution:

- Support postdoctoral training via a competitive externally reviewed grant program to provide two-year postdoctoral fellowships. Criteria for awarding the funds will include a productive work environment, defined research goals, and a mentoring plan that includes training in publishing and grant writing.
- Assure nationwide recruitment of postdoctoral fellows to Idaho.
- Assure appropriate mentoring of fellows.
- Monitor progress of postdoctoral fellows toward productive research experience by external review.
- Assist in placement of postdoctoral fellows into the workforce.

2.7. Participate in Clinical Translational Science Research
Idaho INBRE will participate in translational medicine by partnering with the Univ. of Washington (recipient of a CTSA grant from the NCRR, entitled Institute of Translational Health Science (ITHS)) in the Community Outreach Core. The Univ. of Washington is the leader of the WWAMI (Washington, Wyoming, Alaska, Montana, Idaho) Medical Program, and therefore, Idaho has a long history of scientific and educational collaboration through the established WWAMI infrastructure. The INBRE PI (CH Bohach) is a member of the newly formed WWAMI States Translational Research Consortium Steering Committee for ITHS-INBRE-COBRE-WWAMI collaboration. This will provide the INBRE program the opportunity for its faculty to develop novel methods in clinical translational research. To begin the collaboration, all researchers in Idaho have been invited to apply for competitive pilot project funding to take basic research to the next level of translational research. Also, the Idaho INBRE program will participate in regional interdisciplinary conferences in clinically relevant topics with the goal of developing interdisciplinary collaborations. As the ITHS matures and as Idaho INBRE's participation expands, other opportunities will emerge. By having Idaho INBRE represented on the Steering Committee, key researchers will be made aware of new opportunities as they develop. In addition, opportunities across the Western IDEa states to interface with a CTSA will be developed (see Specific Aim 5).

All INBRE researchers in this renewal application have the potential to collaborate with the ITHS, however, one Investigator Research Plan, in particular, is exceptionally well suited. Dr. D Stevens, MD, PhD, Adjunct BSU faculty and research scientist at the VA Medical Center in Boise is a Project Leader (Mentor) of the proposal entitled, Impact of Antibiotics on Expression of Virulence-associated Exotoxin Genes in Gram Positive Pathogens (see pages 385-402). A three-way collaboration focused on bacterial pathogenesis between this INBRE team, the UI Host-Pathogen Interactions COBRE team (PI, GA Bohach), and the Univ. of Washington ITHS (PI, Nora Disis) will be developed and include the preclinical analysis of therapeutics or interventions strategies against Gram positive bacterial infections.

Specific Aim 3: To provide research opportunities to Idaho undergraduate students and serve as a pipeline for these students to continue in health research careers.

A broad base of students with interest, enthusiasm, and knowledge in science is a necessary first step to develop the next generation of biomedical researchers. A comprehensive pipeline spanning K-12 through post-doctoral training will be provided with progressively greater experiences in biomedical research to increase the number of students pursuing careers in health-related science. To accomplish this, all Institutions in the Idaho Network will be involved at various levels. A series of interlocking programs comprise the "Pipeline to Graduate Education" and will be maintained and enhanced in Idaho. The Administrative Core will coordinate the Pipeline, but the activities will occur at all 10 INBRE Network sites. Central to the success of the Pipeline is that students are mentored and provided with information and advice to enter the next step of training. Programs developed during INBRE-1 are at the point where any student in Idaho who has an interest in and talent for research can find an opportunity to pursue that career in Idaho. The programs are described as four actions (3.1-3.4, below):

3.1. Provide Opportunities for Graduate and Post-doctoral Student Research
Graduate student and post-doctoral fellow research activities are addressed in Specific Aim 2, above.
3.2. Provide Opportunities for Undergraduate Research:
Four highly successful avenues of undergraduate research participation (Fellows, Scholars, Interns, and Academic Year Research) and a national meeting opportunity will be continued.

- **The INBRE Summer Research Fellows Program**
 At the research-intensive (UI and ISU) and Research Partner institutions (BSU, NNU, CI), upper-class undergraduates will participate in laboratory research for 10-weeks during the summer. Students will be paired with a faculty member and a specific research project. At the end of the 10-weeks, students and faculty from across Idaho will come to the Annual Idaho INBRE Summer Research Conference to share their research through poster sessions and scientific talks. INBRE will fund 30 to 40 students each year.

- **The INBRE Summer Scholars Program**
 Because students with no research experience often have difficulty finding their first research opportunity, this program will enhance their competitiveness. Each July, 12 to 20 freshman or sophomore students with an interest in science as a career but with no lab experience will spend two-weeks in an intense immersion course at BSU. They will be supervised by a faculty/graduate student team to do a group project in molecular biology. Four to five students will work together on research problems that require learning PCR, gene cloning, DNA sequencing, and protein purification. At the end of the two weeks, the team will create a poster, and present their results at the Annual Idaho INBRE Summer Research Conference.

- **The INBRE Internship Program**
 Internship programs will place students from Outreach Institutions into research laboratories, local biotechnology industries, or health care facilities for 10 weeks in the summer. These experiences will give students needed skills and practice in lab techniques. The Interns will come to the Annual Idaho INBRE Summer Research Conference to share their research through poster sessions and scientific talks.

- **Academic Year Research**
 The research momentum created during the summer will be maintained at some level during the academic year, especially at the Research Partner Institutions where there are no or few graduate students. Funds will be provided to support undergraduate students to continue their research during the academic year. The program will be site-specific and each college will decide the number of academic-year fellowships.

- **Travel Grant Awards.** There is no better incentive for students to become excited about research than to present results at a national meeting. Thus, built into the Summer Fellows Program is an expectation that all students present their results at a national meeting. Each student prepares for this by presenting a poster at the Annual Idaho INBRE Summer Research Conference in August.

3.3. Provide Opportunities for K-12 Programs
The best way to sustain improved science experiences for K-12 students is to "teach the teacher". If a lasting impact is made on the educator, then a much larger number of students are ultimately influenced. The successful Science Camp educator experience, developed at the community college, CSI, will be continued and serve as the model for other institutions. INBRE will contribute modestly to a variety of already established interactions that include direct outreach of science programs to K-12 grades and science faculty partnering with local K-12 educators. Examples of the Programs that will be continued include:

- Science Camp with educator training at CSI
- The Summer Research Academy for high school students and their teachers at ISU.
- Migrant/Minority Summer Camps at BSU.
- The Magic Valley Science Expo at CSI.
- Science Expo at NNU
- Girls in Science and Technology at NNU
- Dr. Pickelstein science experiments for K-8 through BSU
- Summer High School Student Scholars program at BSU
- Science Extravaganza at NNU.
- Science Olympiad, statewide.

SEPA (R25) and INBRE: INBRE involvement with the K-12/pre-college level programs will be interfaced and sustained by seeking funding in partnership with the Boise Discovery Center and local schools through The Science and Education Partnership Award [(SEPA) (R25)] funding mechanism. The SEPA Program, under the aegis of NCRR, was designed specifically to expose K-12 students to science and opportunities for careers in
science. Henry A. Charlier, PhD, Associate Professor of Chemistry at BSU will write a SEPA proposal during the first year of the INBRE-2 grant. Dr. Charlier was a junior investigator in INBRE-1 and frequently makes classroom presentations at elementary schools as “Dr. Pickelstein” and has developed excellent rapport with K-12 students and educators.

3.4. Develop Biomedical Outreach Education Websites
Interactive informative INBRE-Outreach Institution Websites will be developed for easy access by K-12 educators. The Outreach Institution, LCSC, has begun to develop this approach and the in-progress INBRE-LCSC site (http://www.lcsc.edu/inbre/) will serve as a model for other institutions.

Specific Aim 4: To enhance the science and technology knowledge of Idaho’s workforce.
The Outreach Institutions will educate the workforce through new and refreshed biotechnology curriculum and provide engaging activities to educate the lay public. The goal will be to enhance the scientific literacy of the populace and ready a trained labor force. Long term sustainability of the INBRE program accomplishments in Idaho will require the non-scientific community to appreciate the everyday importance of biomedical research. Thus, through two actions (4.1-4.2, below) support from the general population and the business community in Idaho will be gained for the infrastructure opportunities initiated and developed by INBRE.

4.1. Encourage the developing biotechnology industry
Idaho is at the early stages of developing a biotechnology-based economy. Currently based on agricultural links to biotechnology, new areas in the biomedical arena are emerging and will flourish as research and technology transfer expands in the State. Idaho’s first biomedical technology organization called Bioldaho, is a 501(c)(6) chartered organization with a broad base representing all biotech businesses, all colleges and universities, government and health care organizations, and investors. INBRE-2 will continue to partner with this organization, as well-paying jobs for Idaho citizens are central to sustaining INBRE’s impact on the State.

A Biotechnology Assoc. Degree was initiated at CSI and will provide a pool of employees for Idaho’s emerging biotechnology industry. The Summer Interns Program at NIC provides hand-on training in health care and pharmaceutical settings to ready students for employment. Both opportunities will be continued and expanded.

4.2. Educate the General Public
Although print, audiovisual media, and the internet provide much information especially on sensational discoveries or the risk/benefits of specific foods or lifestyle choices, the power of in-person interactions is not diminished. Three activities, initiated during INBRE-1 will be continued and expanded to specifically target educating the general population about biomedical research advances:

- **The Mini-Medical School**
 Medical and research experts will present a medically-relevant topic to the lay community in evening sessions over a period of five weeks. The format mimics a regular course with required registration, nominal tuition, and a certificate of completion at the end. Typical topics may include: “Maintaining Mental Health,” “Living with Heart Disease,” A Digest of Digestion” or “Managing Cancer.” Importantly, new research findings will be presented with basic and clinical science. The Mini-Medical School was presented during INBRE-1 in the Boise area with BSU and attracted ~100 people/year. This venue will be continued and expanded to two new sites: Pocatello (location of ISU and Bannock Regional Medical Center) and Coeur d’Alene (Location of NIC and Kootenai Medical Center and the Cancer Care Center). The success of this program requires a community with a regional hospital, medical sub-specialists, a local sponsoring college, and faculty who have expertise in the topic.

- **Science “On Tap”**
 Local research scientists speak about a topic of general interest in a public restaurant/pub every month. This community outreach program, offered at Coeur d’Alene in association with NIC was partly supported by INBRE-1 and attracts ~60 people at each presentation, often in standing-room-only conditions. Topics will be selected with a general appeal, such as “Emerging infectious diseases,” “Health effects of global warming” and “Evolution around us.” Speakers will be selected from the local college to make the topic
accurate but understandable and to describe how new biomedical breakthroughs help expand our knowledge. This popular program will continue and be expanded to Moscow, Lewiston, and Twin Falls.

- **Health Talks**
 Faculty and physicians speak in a weekly Seminar Series format that is open to the public. Research is related to health topics of general interest. NIC will continue to sponsor the series that attracts approximately 70 participants every week.

Specific Aim 5: To expand Idaho research opportunities across the Western IDEaA Region.

All INBRE PIs from the Western IDEaA States (Alaska, Hawaii, Idaho, New Mexico, Montana, Nevada, and Wyoming) propose this identical **Last Specific Aim** (or voice their support in the case of Nevada’s PI, not up for renewal). Cooperative activities in the Western IDEaA region will be formally expanded to maximize opportunities for faculty and students in research and in sharing INBRE/COBRE-built research infrastructure (see Letters of Support, pages 356-358 and 361). Likewise, each renewal proposal identifies a line-item $20,000 towards this Aim, and if funded, the first 6-9 months will be used to plan and initiate the program. Regional collaborations will be driven by common scientific research themes and/or available services and will include INBRE, COBRE, and/or an NIH Center for Translational Science (CTSA) investigators. Common research themes with potential for collaboration are shown in Table 8.

Table 8. Potential for Research Expansion across the Western IDEaA Region

<table>
<thead>
<tr>
<th>Scientific Themes</th>
<th>Alaska</th>
<th>Hawaii</th>
<th>Idaho</th>
<th>Montana</th>
<th>Nevada</th>
<th>New Mexico</th>
<th>Wyoming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Health for rural/indigenous communities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Infectious diseases</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cancer and the cellular bases for disease</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Neurosciences</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Evolution modeling & systematics</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Services Available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioinformatics Infrastructure/activities</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓ indicates INBRE, COBRE, or both INBRE & COBRE funding

Together the **Regional Network** of scientific and translational expertise provides critical mass ripe for interstate cooperation. **Four actions (5.1-5.4, below)** to expand the **Network** interactions are proposed:

5.1. **Collaborative Interstate Seed Grants**
Competitive seed grants will be offered to develop collaborative biomedical research projects with participants from two different Western IDEaA states and (if applicable) one NIH CTSA, such as the Institute for Translational Health Science at the Univ. of Washington (see Letter of Support, page 359-360). Funding at $40-60K total/yr will be provided by equal contribution/participating program, with competitive renewal available for a second year. The goal for recipients will be to submit an NIH R-type proposal.

5.2. **Undergraduate Student Interstate Research Opportunities**
Opportunities for undergraduate students to participate in transformative research experiences in another Western IDEaA state will be provided. Individual INBRE programs will host expertise-specific student programs, such as lab fellowships, workshops, and summer camps. This plan will expand the horizons of all **Network** students.

5.3. **Regional Scientific and Programmatic Meetings**
Western IDEaA states regional meetings will be hosted annually to showcase research projects and encourage collaborations and special topic workshops will be sponsored. Likewise, the Western INBRE PIs will meet annually to improve regional coordination.

5.4. **Regional Resource Exchange**
A repository for public data, publications, and tools will be established among the Western IDEaA states and serve as a clearinghouse, available to all regional INBRE and COBRE participants, documenting available resources and expertise.
APPENDIX D:
Curricula Vitae of Biomolecular Sciences Faculty
Eric C. Brown, Ph.D.

Work: Department of Chemistry Home: 2029 Columbus St.
Boise State University Boise, ID 83705
1910 University Drive Phone: (208) 343-1019
Boise, ID 55455-1520 Fax: (208) 426-3027
Phone: (208) 426-1186 Email: ericbrown3@boisestate.edu

PROFESSIONAL EXPERIENCE

Assistant Professor of Chemistry
Boise State University, Department of Chemistry and Biochemistry
August 2006 to present

Postdoctoral Research Associate, NIH Postdoctoral Fellow
University of Minnesota, Department of Chemistry
Advisor: Professor William B. Tolman

EDUCATION

Ph.D., Organic Chemistry (2002)
Oregon State University, Corvallis, OR
Advisor: Professor Kevin P. Gable
GPA: 3.92 / 4.00

B.S., Chemistry (1997)
University of Idaho, Moscow, ID

PUBLICATIONS

7. York, J.T.; Brown, E.C.; Tolman, W.B. “Characterization of Complex Comprising a [Cu₃(S₂)₂]²⁺ Core: Bis(μ-S₂⁻)dicopper(III) or bis(μ-S₂⁻⁻)dicopper(II)?.” *Angew. Chem., Int. Ed.* 2005, 44, 7745-7748.

ORAL PRESENTATIONS

POSTER PRESENTATIONS

GRANTS FUNDED

2010 NSF REU, Co-PI $112,461
REU Site: Summer Research in Chemistry at Boise State University for First Year Undergraduates

2010 Mountain State Tumor & Medical Research Institute, PI $7,500
Investigating the Unusual Metal Dependency of Peptide Deformylase Using Synthetic Models

2009 BSU Design for Learning Success, Co-PI $20,000
Expanding Access to Organic Chemistry at BSU

2008 Mountain State Tumor & Medical Research Institute, PI $5,000
Preparation of Synthetic Analogue for Zinc and Iron-Containing Peptide Deformylase

2008 Idaho State Board of Education, Co-PI $99,700
Going Green: Environmental, Economic and Efficient Organic Chemistry Lab Curriculum

2008 NSF CCLI, Co-PI $200,800
Acquisition of GC/MS and FT-IR Instrumentation to assist with the Integration of Research-Based Learning throughout Boise State University’s Chemistry Curriculum

2008 **SBOE HERC, Co-PI**
Serial Analysis of Protein Expression (SAPE) for Quantitative Mass Spectrometry

$102,000

2007 **Inland Northwest Research Alliance, Co-PI**
Detector for Pertechnetate Ion in the Shallow Geologic Subsurface

$15,000

2007 **DOE LDRD, PI of BSU Subcontract**
Enhancement of Separation Methods in Nuclear Fuel Recycling

$750,000 (BSU subcontract: $100,000)

2006 **NSF CRIF:MU RUI, Co-PI**
Acquisition of a 500 MHz NMR Spectrometer at Boise State University

$500,000

AWARDS AND HONORS

- **NIH Ruth Kirschstein Postdoctoral Fellowship**, University of Minnesota, 2003-2005
- **David P. Shoemaker Memorial Fellowship**, Oregon State University, 2000 – 2001: Award given to a senior graduate student for their outstanding academic career and potential for an extraordinary research career in chemistry
- **Tarter Fellowship**, Oregon State University, 2000 and 2001: Summer research fellowship
- **ASBSU Golden Apple Award Nominee (Teaching Award)**, 2008 and 2009
- **BSU Top Ten Scholar Honored Faculty Member**, 2010

SERVICE

- Chair, American Chemical Society (ACS) Snake River Local Section, 2009-2010
- Co-General Chair for 2012 ACS Northwest Regional Meeting (NORM 2012), present
- Chair-Elect, ACS Snake River Local Section, 2008-2009 and 2011-present
- ACS NOR Board Delegate, 2010 - present
- Senator, BSU Faculty Senate, 2009-2011
- Manuscript reviewer for *Inorganic Chemistry*, 2007 – present
- Idaho Academy of Science 50th Anniversary Organizing Committee, 2007-2008
- Department of Chemistry, Honors and Awards Committee, *Fall 2006 - present*
- College of Arts and Sciences Honors and Awards Committee, *Fall 2006*
- Boise State University Biosafety Committee, 2008-2010
- Chemistry Olympiad Coordinator, 2010 and 2011
PROFESSIONAL DEVELOPMENT

- Regional Meeting Planning Conference, 2010
- American Chemical Society Leadership Conference, 2009
- Service Learning Workshop, Boise State University, Fall 2006
- Preparing Future Faculty Program, University of Minnesota, Fall 2004

COURSES TAUGHT

- Chemistry 111- General Chemistry I
- Chemistry 111L – General Chemistry Laboratory
- Chemistry 112 – General Chemistry II Online Course
- Chemistry 307 – Organic Chemistry I
- Chemistry 309 – Organic Chemistry II
- Chemistry 310 – Organic Chemistry II Laboratory
- Chemistry 324 – Advanced Laboratory II
- Chemistry 401 – Advanced Inorganic Chemistry
- Chemistry 286, 386, 498 – Chemistry Seminar
EDUCATION:

1991-1996 Medical College of Wisconsin, Department of Biochemistry, Milwaukee, WI
•Ph.D. in Biochemistry, January 1997
 •Research Advisor: Henry M. Miziorko, Professor, Ph.D.

1986-1991 University of Wisconsin-Stevens Point, Departments of Chemistry and Biology, Stevens Point, WI
•B.S. Chemistry (ACS) and Biology, May 1991

PROFESSIONAL EXPERIENCE:

2000-present ASSISTANT PROFESSOR, Chemistry Department, Boise State University, Boise, ID
•Teaching: General Chemistry, Biochemistry, Seminar, Enzyme Kinetics and Mechanism, Bioinformatics.
•Research: Two projects involving the study of alcohol dehydrogenase, carbonyl reductase
•Performed research with >100 undergraduate students and 2 masters student.

1997-2000 POSTDOCTORAL FELLOW, Department of Biochemistry, The University of Iowa, Iowa City, IA
•Applied steady state and transient enzyme kinetics, and site-directed mutagenesis techniques to study cooperativity in alcohol dehydrogenase
•Expressed and purified recombinant protein from both yeast and bacteria
•Optimized conditions for protein crystal growth
•Used a stopped-flow spectrophotometer and a fluorometer
•Utilized software to model protein structure (O), fit data (Fortran programs of Cleland and Nonlin), conduct bioinformatic searches (GCG) and simulate chemical reactions (Kinsim)
•Mentored an undergraduate students during their summer research fellowships

1991-1996 GRADUATE STUDENT/RESEARCH ASSISTANT, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
•Applied steady state kinetics, active site directed affinity labeling, inhibitor design, and protein chemistry to study the enzymatic mechanisms of phosphoribulokinase and 3-hydroxy-3-methylglutaryl-CoA synthase
•Prepared coenzyme A thioesters, thioethers, sulfoxides, and analogs
•Used HPLC, FPLC, anaerobic chamber, and NMR
•Trained lab personnel

1991 SEMESTER BREAK RESEARCH PROGRAM PARTICIPANT, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
•Applied steady state enzyme kinetics to study the conjugation of ubiquitin to target proteins

1990 DOE SCIENCE AND ENGINEERING RESEARCH SEMESTER FELLOW: Argonne National Laboratory, Chemistry Building, Argonne, IL
•Synthesized organic superconductors using organic and inorganic synthetic procedures that involved electrocrystallization

1987-1988 UNDERGRADUATE TEACHING ASSISTANT: University of Wisconsin-
Stevens Point, Biology Department, Stevens Point, WI
• Taught transmission electron microscopy, sample preparation, and photography
• Conducted research project on geotropism in plants

1987-1988 TUTOR: University of Wisconsin-Stevens Point, Biology Department, Stevens Point, WI
• Tutored botany to undergraduate students

AFFILIATIONS:

2000-present American Chemical Society
2000-present AFFLIATE MEMBER, Mountain States Medical Research Institute
2000-present Idaho Academy of Science

AWARDS AND HONORS:

1986 Phi Eta Kappa Freshman Honor Society
1990 Department of Energy, Science and Engineering Research Semester Fellowship, Argonne, IL
1991 Brian Eagon Research Award, Biology Department, University of Wisconsin-Stevens Point
1993-1994 American Heart Association Predoctoral Fellowship
1995-1996 American Heart Association Predoctoral Fellowship
1997-1998 U.S. Department of Health and Human Services, National Heart, Lung, and Blood Institute Postdoctoral Training Fellowship
1998-2000 U.S. Department of Health and Human Services, National Institute on Alcohol and Alcohol Abuse Individual Postdoctoral Training Fellowship
2010 Finalist - Idaho Innovation Award

GRANTS
“STEM Education for All: Building a Vision for Sustaining Innovation and Prosperity.” Co Principle Investigator, Period 9/01/09-8/31/11 NSF-MSP Start Partnership, The goal of this grant is to collect data from several sources across Idaho to address STEM concerns in the state.

“Biophysical and Biochemical of Protein Structure and Interactions.” Project Team Leader, $150,000, Period 7/01/05-6/30/07. Office of Research Administration, Boise State University.

“Structure/function analysis of anthracycline reduction by human carbonyl reductase.” Magnet Principle Investigator My portion is for about $376,000 Period 7/01/04-6/30/09. This is a subproject that is part of the Idaho BRIN renewal entitled Idaho-INBRE, NIH/NCRR P20-RR16454

“Synthesis of doxorubicin C14 benzyl ethers and evaluation as carbonyl reductase substrates and topoisomerase II inhibitors.” Mountain States Tumor and Medical Research Institute. Co PI. $5000, 5/04 – 5/05.

“Anthracycline Reduction by Human Liver Carbonyl Reductase: Determination of the kinetic mechanisms and substrate/inhibitor specificities” Principal Investigator $70,000 Period: 9/01/2003-8/31/04 Funding Agency: Subproject of NIH-BRIN Grant # P20RR16454

The goal of this grant is to quantitatively determine the kinetic mechanisms of anthracycline reduction by human carbonyl reductase. Structure/function studies will be used to understand what accounts for the inhibitor and substrate specificities of the enzyme. Another goal of this grant is to generate significant preliminary data for submission of an R01 proposal to the NIH.
“Anthracycline Specificities of Carbonyl Reductases”
Principal Investigator $100,000 Period: 7/01/2003-6/30/05
Funding Agency: NIH/NIH 1 R15 CA102119-01
The goal of this grant is to identify, purify and kinetically characterize the enzymes with anthracycline reductase activities that are present in rabbit heart.

"Mechanisms of Anthracycline Pharmacokinetics and Aging"
Co-Principal Investigator $557,400 Period: 10/1/2003-9/30/07
Funding Agency: VA Merit Review Grant
The major goals of this project are to study the effects of aging on the activity of enzymes involved in anthracycline metabolism and transport.

"Mechanistic Studies of the Peroxisomal Multifunctional Proteins I and II"
Principal Investigator $38,840 Period: 7/01/2001-6/30/2004
Funding Agency: Research Corporation Cottrell College Science Award No. CC5404
The goal of this grant is to understand the kinetic mechanisms of multifunctional proteins I and II, in order to gain insight into their roles in bifunctional protein deficiency.

"Inhibitor Specificities of Human Liver Carbonyl Reductase"
Funding Agency: Mountain States Tumor and Medical Research Institute
The goal of this grant is to design and test human liver carbonyl reductase inhibitor candidates.

"Anthracycline Reductases from Rabbit Heart"
Principal Investigator $5000 Period: 7/01/2002-12/31/2003
Funding Agency: Boise State University Faculty Research Grant
The goal of this grant is to identify, purify and kinetically characterize the enzymes with anthracycline reductase activities that are present in rabbit heart. Continue the work from the grant listed below.

"Purification and Characterization of Anthracycline Reductases from Rabbit Heart."
Principal Investigator $5000 Period: 7/01/2001-6/30/2002
Funding Agency: Mountain States Tumor Institute/Mountain States Medical Research Institute
The goal of this grant is to identify, purify and kinetically characterize the enzymes with anthracycline reductase activities that are present in rabbit heart.

"Purification and Characterization of Recombinant Human Liver Carbonyl Reductase"
Principal Investigator $5000 Period: 7/01/2002-6/30/2003
Funding Agency: Mountain States Tumor Institute/Mountain States Medical Research Institute
The goal of this grant is to develop a recombinant expression system for human carbonyl reductase and map the substrate specificities of human carbonyl reductase for anthracyclines.

"Anthracycline Specificity of Recombinant Human Carbonyl Reductase."
Principal Investigator $5000 Period: 7/01/2001-6/30/2002
Funding Agency: Boise State University Faculty Research Grant
The major part of this grant was to develop an expression system for human carbonyl reductase and express, purify, and characterize the kinetics of anthracycline reduction.

PUBLICATIONS:

"Superconductivity at 2.8 K and 1.5 kbar in κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$: The First Organic Superconductor Containing a Polymeric Copper Cyanide Anion." Inorganic Chemistry 30, 2586-2588.

Patents

National Meetings:

Statewide/Regional Meetings:

PRESENTATIONS:
1995 Invited seminar, ““Evidence Supporting Catalytic Roles for Aspartate Residues in $Rhodobacter\ sphaeroides$ Phosphoribulokinase.”” Given to the Department of Chemistry at the University of Wisconsin-Stevens Point, Stevens Point Wisconsin.

2003 Invited seminar, “Coenzyme binding by horse liver alcohol dehydrogenase: Evaluating the role of charge at position 228.” Given to the Department of Chemistry at Washington State University, Pullman Washington.

COURSES TAUGHT

Undergraduate Offerings:
- CHEM 111 - College Chemistry I
- CHEM 112 - College Chemistry II
- CHEM 431 - Biochemistry I
- CHEM 432 - Biochemistry Laboratory
- CHEM 433 - Biochemistry II
- CHEM 286/386 - Seminar
- CHEM 498 - Senior Seminar

Graduate Offerings:
- CHEM 500 - Introduction to Chemical Research
- BIOCHEM 510 - Advanced Protein Chemistry
- BIOCHEM 512 - Intermediary Metabolism
- CHEM 597 - Special Topics - Enzyme Kinetics
KENNETH A. CORNELL
Associate Professor, Dept. Chemistry & Biochemistry, Boise State University, Boise, ID 83725
Tel: (208) 426-5429; Fax: (208) 426-3027; E-mail: kencornell@boisestate.edu

(i) Professional Preparation
Oregon State University Microbiology BS, 1983
Wichita State University Microbiology MS, 1985
Oregon Health Sciences University Biochemistry/Molecular Biology Ph. D, 1997
Portland VA Medical Center Molecular Immunology Postdoc, 1997-99

(ii) Appointments
2009-present Associate Professor, Dept. Chemistry, Boise State University, Boise, ID
2004-2009 Assistant Professor, Dept. Chemistry, Boise State University, Boise, ID
2003-2004 Clinical Research Assistant Professor, Div. Vascular Surgery, OHSU, Portland, OR
2002-2004 Senior Scientist, AcryMed Inc., Portland, OR
2000-2004 Adjunct Assistant Professor, Dept. Chemistry, Portland State Univ. Portland, OR
2002-2003 Adjunct Instructor, Dept. Biology, Portland Community College, Portland, OR
2000-2002 Staff Scientist, Molecular Biology Group Leader, INTERLAB Inc, Portland, OR
1997-1999 Postdoctoral Fellow, Portland V.A. Medical Center, Portland, OR
1988-1991 Research Associate, Arthritis & Rheumatic Diseases, OHSU, Portland, OR.
1982-1983 Graduate Research Assistant, Wichita State University, Wichita, KS.
1983 Microbiologist, Stayton Canning Company, Stayton, OR.

(iii) Honors
1982 Mark M. Middlekauf Scholarship, Oregon State University.
1984 Biological Sciences Research Fellowship, Wichita State University.
1992,1993 V. A. Research Fellowship, Portland V.A.M.C.
1992 Tartar Trust Fellowship, Oregon Health Sciences University.
1992 Molecular & Cell Biology Fellowship, Oregon Health Sciences University.
1994-1996 NIH Molecular Hematology Predoctoral Fellowship, Dept. of Hematology, OHSU.

(iv) Selected peer-reviewed publications (in chronological order)
 Autoimmunity to a 28-30 kD cell membrane DNA binding protein: occurrence in selected sera from
 mimicry of a cell surface DNA receptor: evidence for anti-DNA antibodies being a subset of anti-anti-
 Immunization of BALB/c mice with monoclonal anti-DNA antibody induces an anti-idiotypic antibody
5. Winter, RW, Cornell, KA, Johnson, LL, Isabelle, LM, Hinrichs, DJ, and Riscoe, MK. (1995) Hydroxy-
6. Cornell, KA, Winter, RW, Tower, PA, and Riscoe, MK. (1996) Affinity purification of 5-
 methylthioribose kinase and 5’-methylthioadenosine/S-adenosylhomocysteine nucleosidase from

(v) Service Activities
Director M.S. Program, Dept. Chemistry & Biochemistry, BSU, Boise, ID 2010-present
Director, Merck/AAAS Undergraduate Research program, BSU, Boise, ID 2008-2011
Grant Reviewer, WHO/TDR, Geneva, Switzerland, 2010-present
Grant Reviewer, Idaho Dept. Agriculture, Specialty Crops Program, Boise, ID 2011-present
Manuscript reviewer, Biochemical Pharmacology (2005-present), MBio (2010-present), Bioorganic and Medicinal Chemistry (2011-present)
Service Learning Advisory Panel, Boise State University, Boise, ID 2009-present
Chair, University Biosafety Committee, Boise State University, 2005-present
Chair, COAS Tenure & Promotion Review Committee, Boise State University, 2010
Chair, Molecular & Cell Biology section, AAAS - Pacific Division, 2008-2010
Secretary, Snake River Division, American Chemical Society, Boise, ID, 2007-2010
Symposia organizer, 88th, 89th, 90th, 91st Annual Meeting AAAS PD, 2007-2010
Research mentor, Idaho INBRE Program, Boise, ID, 2005-present (10 students)
Research mentor, Idaho Upward Bound Program, Boise, ID, 2005, 2006 (3 students)
Member, University IACCUC Committee, 2006-2007
Senior thesis advisor, Dept. Chemistry, Boise State University, 2005-present (10 students)
Affiliate member, Mountain States Tumor & Medical Research Inst., Boise, ID, 2005-present

(vi) Collaborators
Dr. Arvin Farid, Dept. Civil Engineering, Boise State University, Boise, ID
Dr. P. Lynne Howell, Dept. Biochemistry, Univ.of Toronto / Hospital for Sick Children (Canada)
Dr. Owen McDougal, Dept. Chemistry, Boise State University, Boise, ID
Dr. Kristen Mitchell, Dept. Biology, Boise State University, Boise, ID
Dr. Barbara Moffat, Dept. Biology, University of Waterloo, Waterloo (Canada)
Dr. Raj Nagarajan, Dept. Chemistry, Boise State University, Boise, ID
Dr. Nikhat Parveen, Dept. Microbiology, University of New Jersey Medical School, Newark, NJ
Dr. Jean-Baptiste Roullet, Dept. Pediatric Metabolism, OHSU, Portland, OR
Dr. Margaret Sauter, Dept. Botany, Christian Albrechts University at Kiel (Germany)
Dr. Juliette Tinker, Dept. Biology, Boise State University, Boise, ID
Dr. Denise Wingett, Dept. Biology, Boise State University, Boise, ID
(vii) **Master's Thesis Advisor**
Kelli Pease (Biology)
Reese Knippel (Chemistry)

M.S. Advisory Committees
Alma Hodzic (grad 2007)
Ashley Masterson (grad 2009)
Jason Beseker (grad 2008)
Patrick Aranda (grad 2010)

(viii) **Ongoing Research Support**

W81XWH-09-1-0588 Dept. Defense/CDMRP Cornell (PI) Date: 09/09-08/12 ($940,000)

A West Nile Virus Vaccine. The goal of this project is to develop oral vaccines for West Nile Virus.

Role: PI

P20 RR01645 Idaho INBRE/NIH Bohach (PI) Date: 5/09-4/14 ($350,000)

Global Consequences of Interruption of Microbial Autoinducer Signaling. The goal of this project is to determine the role of MTA nucleosidase in AI-2 signaling in its effect on pathogenesis in *E. coli*.

Role: Magnet PI

CHE-0923535 NSF MRI Cornell(PI) Date: 08/09-07/12 ($597,000)

Acquisition of a Liquid Chromatography Tandem Mass Spectrometer. This project supports the purchase of a LC tandem mass spectrometer and a half-time technician for Boise State University.

Role: PI

Recently Completed Research Support

“*Merck/AAAS Undergraduate Research Program*,” Merck/AAAS, Role: PI Date: 5/08-5/11

“*Advanced Biomolecule Computer Modeling Curriculum*,” Idaho SBOE, Role: PI Date: 7/09-12/10

“A *21st Century Biochemistry Lab…*”, Idaho SBOE, Role: PI Date: 7/09-7/10

“Establishing Community Engagement ...” Boise State University, Role: PI Date: 1/08-1/11

“DNA Safeguard I” Agency: CDMRP Role: Co-PI Date: 1/07-12/08

“Preparative Ultracentrifuge for COAS” NSF EPSCoR / BSU Role: PI Date: 09/06-8/07

“Targeted Gene Deletions in Methionine Salvage” MSTMRI. Role: PI Date: 05/07-9/08

“Analysis of Microbial Methionine Salvage” BSU FRAP Role: PI Date: 08/07-5/08

“Development of NpEFFF for Protein Purification” BSU Role: PI Date: 07/06-07/07

“Novel Burn Graft Biomaterials” NIH (R43 GM64847) Role: Co-PI Date: 10/04–9/06

“Development of Novel Antimicrobial Catheters” NIH (R43AI061894) Role: PI Date: 11/05–4/06
Curriculum Vitae: Kevin Feris
Microbial Ecologist
Department of Biology
Boise State University
1910 University Dr.
Boise ID 83725
Phone: 208-426-5498
e-mail: kevinferis@boisestate.edu

Professional Positions
2010 - current Associate Professor, Department of Biology, Boise State University, Boise, ID
2005 - 2010 Assistant Professor, Department of Biology, Boise State University, Boise, ID
2003 - 2005 Postdoctoral research associate, Soil Microbial Ecology Lab, The University of California at Davis, Davis, CA.
2000 - 2003 Research Assistant, Molecular Microbial Ecology Lab, The University of Montana, Missoula, MT.
1997-98 Laboratory Technician: Neurobiology Lab, University of Alaska Anchorage, Anchorage, AK
1996 Laboratory Technician: Biogeochemistry Lab, University of Alaska Anchorage, Anchorage, AK

Education and Training
University of California at Davis
Postdoctoral Research Associate
2003 – 2005

University of Montana
Ph.D Microbial Ecology, 2003

University of Alaska Anchorage
B.S. Biology, 1995
Minor in Chemistry

Research Projects:
• Microbial Ecology:
 1. Determining the long-term ecological effects of heavy metal stress on riverine ecosystems.
 2. Assessing the role of terrestrial and aquatic microbial communities in carbon processing, hydrologic properties, and responses to global change.
• Alternative Energy Generation:
 1. Production of liquid fuels from lignocellulosic biomass. Development of novel nano-bio catalysts for accelerated conversion of lignocellulosic biomass to fermentable sugars
2. Optimization of algal-based advanced biofuels production systems for incorporation into Integrated Biorefineries of agricultural wastes

NanoBioTechnology:

1. Development of novel nanoscale metal oxide antimicrobials and assessment of their environmental toxicology.

Publications:

Papers in review, revision, and preparation:

Current Funding:

- **2010-2013** April 2010, Center for Advanced Energy Studies: “Design and Operational Improvements, and LCA in Anaerobic Digestion of Fermented Dairy Manure Using a 2-Stage process.” PI: Erin Searcy (INL), Co-PIs: A Briones (UI), E Coats (UI), K Feris (BSU), D Keiser (UI), T Magnuson (ISU), A McDonald (UI), D Shrestha (UI). Total funding level: $592,000; Feris share of funding: $74,001.

- **2010-2013** April 2010, INL LDRD: “Specific biological responses to nano metal oxides.” PI: James Hendrickson, Co-PIs: Kevin Feris, Robert Fox, Yoshiko Fujita, Gregory Bala, Steven Aust. Total funding level: $450,000; Feris share of funding: $123,279.

- **2008-2011** NSF MRI: PI: Denise Winget, Co-PIs: Sara Heggland, Nixon Jamee, Kevin Feris, Alex Punnoose. Total funding level: $503,775 (08-08-08 to 7-31-11), Project title: MRI: Acquisition of a FACS (Fluorescent Activated Cell Sorter) to Support Collaborative Research and Education in Biomolecular sciences and nanomaterials applications (DBI Proposal # 0821233).

Grants Pending:

- **June 2011, NSF Hydrologic Sciences:** Title: “Collaborative Research: Novel interdisciplinary flume experiments to investigate the role of the hyporheic zone in

Recent completed funding:

- **2009-2010** NSF REU Supplemental Funding: PI: Kevin Feris. Total funding level $7,000 (June 1, 2009 to May 31, 2010), Project title: Year 2 REU Supplemental support for Collaborative Research: Chronic Stress in Ecosystems Project (DEB Proposal # 0717449).
- **2007-2010** National Science Foundation: MRI panel: PI: Alex Punnoose, Co-PI’s: Tomoko Fujiwara, Kevin Feris, Jerry Harris, Darryl Butt. Total funding level: $584,000 (9-1-07 to 8-31-10). Proposal title: MRI: Acquisition of an XPS system for Interdisciplinary Research and Education.
- **2008-2009** Inland Northwest Research Alliance: INRA Subsurface Biotechnology and Bioremediation Research Initiative. PI: Kevin Feris. Total funding level: $15,665 (3-1-08 to 3-31-09). Proposal title: INRA supplemental funding for Collaborative Research: Chronic Stress in Ecosystems Project.
- **2008** Center for Advanced Energy Studies Collaborative Research Grant. PIs: Kevin Feris (BSU) and Joni Barnes (INL). Proposal title: “Consolidated Bioprocessing of Agricultural Wastewater Treatment and Bioenergy Production. Funding level: $70,000 (4-27-07 to 8-31-08).
- **2006** Center for Advanced Energy Studies Mini Grant. PIs: Kevin Feris (BSU) and Joni Barnes (INL). Funding level: $26,000 (7-17-06 to 9-30-06). Proposal title: Development of a multi-species *Rhodopseudomonad* H₂ producing photosynthetic anaerobic microbial system.
2006 Boise State Faculty Research Grant. PI: Kevin Feris. Funding Level: $5000 (7-1-06 to 6-30-07). Proposal title: Impacts of Ethanol on Anaerobic Production of Tert-Butyl Alcohol (TBA) from Methyl Tertiary Butyl Ether (MTBE) in Groundwater.

2006 University of California Water Resources Center Research Grant: “Does the release of ethanol amended gasoline into anaerobic freshwater aquifers accelerate the biological transformation of methyl-tert-butyl ether (MTBE) to tert-butyl alcohol (TBA)?” $60,000 (7-1-05 to 6-30-07).

2005 NSF EPSCoR Equipment funds, 9-05 to 5-06. Funding level: $21,500. PI(s): Kevin Feris, Greg Hampikian. An Applied Biosystems 310 Prism Genetic Analyzer is Necessary Research Infrastructure for the Department of Biology.

2005 NSF EPSCoR Faculty Start Up Augmentation Program. $10,350 (9-31-05 to 5-31-06)

Student Training/Advising:

Graduate Students:
- **Daniel Stanaway.** Daniel joined the lab in the Spring of 2009. Project: Determining the effects of chronic heavy metal stress on whole system metabolism in the Clark Fork River. Projected graduation date: Fall 2011.
- **Brian Deis.** Use of whole cell encapsulation strategies for the development of a novel consolidated bioreactor for cellulosic ethanol production from regional lignocellulosic feedstocks. Project: Projected graduation date: Summer 2011.
- **Maxine Prior.** Development of third generation biofuels from anaerobic digester effluent. Maxine is a MS student in the Agricultural and Biological Engineering program at the University of Idaho. I am her direct research advisor and she is performing her thesis research in my lab at Boise State.
- **Pamela Hess.** Pam joined my lab and the Biology graduate program during Fall 2006 with a B.S. in Geological Sciences. Pam has made significant research progress and is currently in the analysis/writing stage of her project. Projected graduation date: Fall 2009.

In addition, am currently or recently completed my duties a thesis committee member for the following Biology and Hydrology graduate students:
- Janet Layne (Biology)
- Matt Weaver (Hydrology)
- Cory Hanley (Biology, graduated Summer 2009)
- Jason Besecker (Biology, graduated Summer 2008)

Undergraduate students: Since my arrival at Boise State University in 2005 I have trained/ advised a number of undergraduate researchers in my laboratory. Here I provide a list of these students and a short description of what they are currently doing.
• **Mariona Ribelles.** Mariona joined the lab during Fall 2005 as a paid undergraduate research assistant and has continued in that capacity since then. Currently: Mariona graduated Spring 2008 and has moved on to a Ph.D. program at the Universidad Barcelona.

• **Jason Bell.** Jason joined lab during December 2006 as a paid undergraduate research assistant and continued in the lab through the Summer of 2007. Project: Metal-oxide nanoparticles. After completing his B.S. in Biology Jason was admitted to the M.S. in Clinical Lab Science at Idaho State University. Currently: Jason graduated from this program in 2008 and is currently employed as a Clinical Lab Manager at the Walter Knox hospital in Emmett, ID.

• **Patrick Sorenson.** Patrick joined the lab in Summer 2007 and has worked on the photoheterotrophic H₂ production project. Currently: Patrick graduated in Spring 2008 and has returned to the lab as a MS student during the spring 2009 to study the effect of global climate change on plant-microbe interactions affected by changes in hydrologic regimes.

• **Araya Kiepert:** Araya joined the lab during the Spring 2008 to work on the photoheterotrophic H₂ production project. She graduated in Spring 2008 and stayed with the lab through the Summer 2008. Currently: Araya is currently employed in the local biotech industry and pursuing a number of graduate/professional school options.

• **Wee Wong.** Wee joined the lab during Summer 2006 as an INBRE research fellow. He continued his research in the lab during Fall 2007 for undergraduate research credit. Project: Nanobiotechnology: effect of metal oxide nanoparticles on riverine microbial communities. Currently: Wee is working in the biotech industry in Portland, OR and pursuing admission to the MS program at Portland State University.

• **Steve Lalor:** Steve joined the lab during the spring 2008 initially as a student assistant for Graduate student Pam Hess. He has blossomed from a typical lab newbie to a well trained and capable lab technician. If I am able to continue to support him for his time at Boise State I suspect that he will be motivated to continue his work in science and will move on to graduate school. Currently: Steve is still employed as an undergraduate research technician in my lab exploring the role of lateral gene transfer in maintaining community structure and function under chronic metal stress.

• **Dana Morraco.** Dana joined the lab in January 2007 to work on the photoheterotrophic H₂ production project. She remained with the lab through the fall semester of 2007. Currently: Dana is the Laboratory Coordinator and an Adjunct Instructor of Biology at Ripon College. Dana also owns and runs an organic farm.

• **Darla Morris.** Darla volunteered in the lab during the summer of 2008. She worked on our nanobio projects. Currently: Darla is completing her undergraduate degree and pursuing admission to medical school.

• **Dollie Thompson.** Dollie joined the lab in the spring of 2009 to work on our global change project. Currently: Dollie has a research internship for the summer at the Veterans Administration and plans on returning to the lab this fall.

• **Caitlin Otto.** Caitlin is being co-advised by Dr. Juliette Tinker and myself. She has been working on our nanobiotechnology project since the Summer of 2008. Currently: Caitlin is completing her internship this summer and will be attending graduate school this fall at Arizona State University.
• **Herbert Huttanus.** Bert joined the lab in the summer of 2009 to work on our global change project.

Teaching Experience:

- Biology 497/597, Microbial Ecology 3 credits. Students acquire a fundamental knowledge of microbial ecology by comparing and contrasting ecological interactions in microbial communities to those observed in macrobial communities.
- Biology 598/498 Special Topics: Central Metabolic Theory of Ecology and it’s application in Microbial Ecology. Graduate seminar.
- Biology 415/415G Applied and Environmental Microbiology, 4 credits. An examination of the unique aspects of microbial metabolism and their utility in applied and environmental settings. Strong emphasis is placed on energetics of metabolism, community interactions, ecosystem services/properties and applications in industrial settings.
- Subsurface Microbiology Block Inland Northwest Research Alliance Subsurface Science Graduate Program Core Course. An examination of the communities, processes, metabolisms, and mechanisms of contaminant transformation in the subsurface. Emphasis on the physical, chemical, and hydrological controls on community structure and function and process rates.
- Biology 303: Bacteriology. BIOL 303 GENERAL BACTERIOLOGY (2-6-4)(F). An examination of concepts, problems, and techniques in bacterial and archael biology. Included are discussions of structure, metabolism, control, genetics, taxonomy, pathogenicity, ecology, and evolution. Laboratory topics include growth and physiology, microbial genetics, bacteriophages, and biotechnology.PREREQ: BIOL 301.
- Biology 598/498 Special Topics: Microbial Ecology of Fluvial Ecosystems. Graduate seminar discussing current microbial ecology literature with a focus on flowing water systems.
- Attended a training session on constructing grading rubrics for courses. “**Constructing Grading Rubrics for Writing Assignments While Making Your Life Easier at the Same Time.**” This hands-on workshop presented the practical, applied use of grading rubrics and the advantages of using them.
- Biology 191: General Biology. Introduction to basic biological concepts including basic chemistry, hydrogen bonding, biological macromolecules, thermodynamics, enzymes, biological membranes, prokaryotic vs. eukaryotic cell anatomy, mitosis, meiosis, photosynthesis, respiration, evolution, community and ecosystem ecology, cancer biology, and Mendelian and Molecular genetics.
- Instructor: Soil Science 290, Macrobial Ecology vs. Microbial Ecology: Similarities and Differences in Ecological Patterns at Different Scales, University of California, Davis
- Invited lecture: Soil Science 290 Advanced methods in microbial ecology research, Title of lecture “Non-metric dimensional scaling analysis of DGGE and ITS patterns: Application of advanced statistical techniques to the analysis of microbial community structure.”
Guest Lecture: General Microbiology 3/2003, University of Montana
Guest Lecture: Microbial Physiology 9/2002, University of Montana
Co-Instructor: Microbial Ecology I. University of Montana
Guest Lecture: Microbial Physiology 10/2001, University of Montana
Guest Lecture: Fungal Biology 9/2001, University of Montana
Developed laboratory course for Trends in Microbial Ecology, University of Montana
Trained undergraduate students in molecular biology techniques for independent study project
Guest Lecture: General Microbiology 10/98, University of Montana
Laboratory instructor: University of Montana; Courses Taught: General Microbiology
Laboratory instructor: University of Alaska Anchorage
Courses Taught: General biology for majors, General biology for non-majors,
Introductory Microbiology for the Health Sciences, and General Microbiology.

Presentations:
Dec 2010 Direct Quantification of Microbial Community Respiration along a Contamination Gradient using a novel Hydrologic “Smart” Tracer Daniel Stanaway¹, Roy Haggerty², Shawn Benner¹, Alejandro Flores¹, Kevin Feris. American Geophysical Union Fall Meeting. December 13th-17th, 2010. San Francisco, CA.

vegetation type alter microbial community structure and function at the Protective Cap Barrier Experiment. NSF-EPSCoR Idaho Annual Meeting, Moscow, ID.

May 2009

August 2008

August 2008

April 2008
“Effects of long-term heavy metal stress on hyporheic microbial community structure of the Clark Fork River, MT” Mariona Nadal-Ribelles and Kevin Feris, Boise State University, Department of Biology Boise, ID 83725. Undergraduate Research Symposium, April 14th, 2008, Boise, ID.

June 2008
“Riparian Ecosystem Consequences - a microbial perspective. or predicting and quantifying natural resource damage in chronically stressed ecosystems” J. Gannon, P.R. Ramsey, K. Feris, J. Moore, W. Woessner and M. Rillig Students: Chris Frazer, Bruce Wielinga, O.S. Moynahan. NIEHS sponsored international symposium on Mine-tailing. June 4-6 University of Arizona

June 2007

June 2007

June 2007
“Development of a Rhodopseudomonad H2 Producing Microbial System Driven by Agricultural Wastewater” Kevin Feris, Dana Moracco, Joni Barnes, Cathy Rae. AAAS Regional Meeting Boise ID, June 17th-21st, 2007.

May 2007
“Selective toxicity of zinc oxide nanoparticles to gram-positive and gram-negative bacterial systems.” K. Feris, K. M. Reddy, Jason Bell, Denise Wingett, and Alex Punnoose. ASM General Meeting, May 21-25th, 2007 Toronto CA.

May 2005 Kevin P. Feris, Doug Mackay, Murray Einarson, Nick deSieyes, Lisa Jacobsen, Mark Noske, Larry Justice, Krassimira R. Hristova, and Kate M. Scow. “Presence and Abundance of Bacteria and Archaea During a Controlled Field Release of Ethanol and Benzene, Toluene, and Xylene at

May 2001 **Feris, K.P.** and Holben, W. E., The effects of metal contamination on microbial communities in the Clark Fork River. Presented at the first US-

April 2001 Feris, K.P. and Ramsey, P.W., The Effects of heavy metal contamination on the hyporheic microbial communities in the Clark Fork River. Departmental Seminar, Division of Biological Sciences, The University of Montana

April 1999 Feris, K. and Holben, W. “Common Distributions of Sulfur Reducing Microbial Communities in a Deep Sub-surface Hydrocarbon Saturated Environment; A Potential Hydrocarbon Degrading Consortium” Montana Academy of Sciences regional meeting, Butte, MT.

Journal Reviewer:
2007-current Science of the Total Environment
2007-current Hydrobiologia
2007-current Frontiers in Ecology and the Environment
2006-current Soil Science Society of America Journal
2006-current Water Research
2006-current Chemosphere
2006-current Geomicrobiology
2003 – current Applied and Environmental Microbiology
2003 – current Environmental Science and Technology
2003 – current Microbial Ecology
2003 – current Environmental Microbiology
2003 – current Biodegradation
2004 – current FEMS Microbial Ecology
2005 – current Journal of Contaminant Hydrology

Professional Memberships:
2010 – current American Geophysical Union
2006 - current International Society for Hydrogen Energy
2005 – current Geological Society of America
2005 – current National Groundwater Association
2003 - current Member of the International Society for Microbial Ecology
2003 - current Member of the American Society for Microbiology
2001 - 2003 Student member of the International Society for Microbial Ecology
1998 - 2003 Student member of the American Society for Microbiology
1998 - Member of the Montana Academy of Sciences
1998 - 2000 Biochemistry/Microbiology representative for the Graduate Student Committee, University of Montana
1993-95 Member of National Golden Key Honor Society
Community and Campus involvement:

2010 Chair: Ecosystem Ecologist Search Committee for Department of Biological Sciences, Boise State University
2007-2008 Boise State University Focus the Nation 2008 steering committee member.
2007-2008 Director of Research Symposium for Focus the Nation event at Boise State University Jan 30-31st, 2008.
2007 Proposal Reviewer for NSF Ecological Biology Program (proposal submission date 7-9-2007).
2007 Technical Session Chair 2007 Environmental Sensing Symposium. October 25-26, 2007 Boise State University, Boise, ID.
2007 Biological sensors Session Chair, 2007 Environmental Sensing Symposium. October 25-26, 2007 Boise State University, Boise, ID.
2006 Member of College of Arts and Sciences Tenure and Review Committee
2006 - current Member of BSU Biology Graduate Studies Committee
2005-2006 Member of BSU Biology Department Research committee
2006 Member of search committee for the Systematist search.
2005- Member of Graduate student research grant review committee
2005 - Member of Research Committee, Department of Biology, Boise State University
2002 Volunteer: Global Justice Action Summit
2001 – 2002 Biochemistry/Molecular-Microbiology Graduate student association representative to the campus wide Graduate Student Association, University of Montana.
2000 -2001 Member of the Graduate Student Complaint Committee
1999 Science Fair Judge, The University of Montana Science Fair, April 12, 1999.

Honors and Awards:

1998 - 99 Super Teaching Assistantship, University of Montana
1994 University of Alaska Anchorage Academic Tuition Waiver
Daniel Fologea

POSITIONS AND EMPLOYMENTS

2011 - **BOISE STATE UNIVERSITY** Boise, ID, USA
- Assistant Professor, Department of Physics

2004-2011 **UNIVERSITY OF ARKANSAS** Fayetteville, AR, USA
- 2010 - 2011 Research Assistant Professor, Department of Biological Sciences
- 2006 - 2010 Research Associate, Department of Biological Sciences, Supervisors: Prof. Greg Salamo, and Prof. Ralph Henry
- 2004 - 2006 Research Associate, Physics Department

1993-2003 **NATIONAL INSTITUTE OF PHYSICS AND NUCLEAR ENGINEERING** Bucharest, Romania
- 2000 - 2003 Department Head, Life and Environmental Physics
- 1993 - 2000 Researcher, National Institute of Physics and Nuclear Engineering

2001-2004 **UNIVERSITY OF BUCHAREST** Bucharest, Romania
- 2001 - 2004 Associate Professor (Biochemistry, Genetics, Radiobiology) Faculty of Physics - Biophysics Department
- 2003 - 2004 Senior Researcher, Faculty of Biology, Department of Genetics

EDUCATION

2002 **UNIVERSITY OF BUCHAREST** Bucharest, Romania
- PhD Physics/Biophysics, thesis title: Electroporation: Mechanisms and Applications

1999 **UNIVERSITY JOSEPH FOURIER** Grenoble, France
- 3rd cycle, Bioelectrochemistry

1988-1993 **UNIVERSITY OF BUCHAREST** Bucharest, Romania
- Msc/Bsc Physics/Biophysics

RESEARCH SKILLS AND INTERESTS

- **MAJOR RESEARCH SKILLS**
 - planar bilayer lipid membranes formation and characterization
 - protein reconstitution in artificial bilayer lipid membranes
 - electrical and optical characterization of transmembrane transporter insertion and functioning
 - liposome preparation, loading, functionalization, proteoliposomes, liposomes for drug delivery
 - bioconjugation

- **BIOPHYSICAL TECHNIQUES MASTERED**: Electrophysiology, Patch Clamp, Dynamic Light Scattering, Zeta Potential, Spectrophotometry, Fluorescence, Microscopy (Fluorescence and Optical), Electrophoresis, Macromolecule Translocation through Artificial and Natural Pores

- **GENERAL RESEARCH INTERESTS**: Cell Membrane Biophysics, Pore Forming Proteins, Ion-Channel Electrophysiology, AntiMicrobial Peptides, Gene Transfer by Electroporation, Biosensing, Stochastic Sensing based on Artificial and Natural Nanopores, Drug Delivery using Liposomal Carriers, Biomedical Applications of Nanotechnology, Nanotoxicology
OTHER SKILLS:

- Computer hardware and software: Windows (all platforms), Linux, Office, Data Analysis, very good knowledge of electronics and computer interfacing
- Languages: English, French, Russian, Romanian (native)

SELECTED PUBLICATIONS

D. Fologea, E. Brandin, J. Uplinger, D. Branton, J. Li, DNA conformation and base number simultaneously determined in a nanopore, Electrophoresis, 28, 3186-3192, 2007

D. Fologea, J. Uplinger, B. Thomas, D. S. McNabb, J. Li, Slowing DNA Translocation in a Solid-State Nanopore, Nanoletters, 5(9), 1734-1737, 2005

S. Cosnier, R. Marks, J. P. Lellouche, K. Perie, D. Fologea, S. Szunerits, Electrogenenerated poly(chiral dicarbazole) films for the reagentless grafting of enzymes, Electroanalysis, 12, 1107-1112, 2000

G. Cogalniceanu, D. Fologea, A. Brezeanu, M. Radu – “High voltage short duration pulses promote adventive shoot differentiation from intact tobacco seedlings, Electro and Magnetobiology, 19(2), 177-187, 2000

D. Fologea, A. Brezeanu, M. Radu, P. Cornea, I. Vatafu - Gene transfer by electroporation into tobacco intact petiole tissue, Electro - Magnetobiol., 18, 1, 1-6, 1999

G. Cogalniceanu, M. Radu, D. Fologea, N. Moisoii, A. Brezeanu, Stimulation of tobacco shoot regeneration by alternating weak electric field, Bioelectrochemistry and Bioenergetics 44, 257-260, 1998

Ileana Petcu, D. Fologea, M. Radu, Kinetic of electroinduced pores as a probe of membrane modification produced by ionizing radiation, Bioelectrochemistry and Bioenergetics, 42, 179-185, 1997

2010 - Editorial Board Member, Journal of Membrane Science and Technology

PATENTS

Curriculum Vitae
Jennifer S. Forbey (previously Jennifer S. Sorensen)

PROFESSIONAL PREPARATION

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE</th>
<th>YEAR(s)</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesa State College, Grand Junction, CO</td>
<td>B.S.</td>
<td>1997</td>
<td>Biology</td>
</tr>
<tr>
<td>University of Utah, Salt Lake City, UT</td>
<td>Ph.D.</td>
<td>2003</td>
<td>Biology</td>
</tr>
<tr>
<td>Australian National Univ, Univ. Tasmania, Pharmacokinetics and Toxicokinetics for the Industrial Scientist Training</td>
<td>NSF, PostDoc</td>
<td>2003-04</td>
<td>Biology</td>
</tr>
<tr>
<td>Pharmacokinetics for Pharmaceutical Scientists Course</td>
<td></td>
<td>2006</td>
<td>Pharmacokinetics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2007</td>
<td>Pharmacokinetics</td>
</tr>
</tbody>
</table>

APPOINTMENTS

2008-present Assistant Professor, Dept of Biological Sciences, Boise State University, Boise, ID
2007-present Pharmacokinetic Consultant, Rosa Pharmaceuticals, INC
2007 Instructor, Pharmacokinetics and Pharmacodynamics, Dept of Pharmacology and Toxicology, University of Utah, SLC, UT
2007-2008 Research Assistant Professor, Dept Pharmaceutics and Pharmaceutical Chemistry, University of Utah, SLC, UT
2007 Instructor, Global Crises in Natural Resources, Dept of Biology, University of Utah, SLC, UT
2005-2007 Scientist I, Pharmacokineticist, NPS Pharmaceuticals, SLC, UT
2003-2007 National Science Foundation International Research Postdoctoral Fellow (Australia and New Zealand)
2004-2005 Assistant Professor, Oregon State University, Dept of Fisheries and Wildlife, Cascade Campus, Bend, OR
2002-2003 Graduate Research Fellow, University of Utah, SLC, UT
2001-2002 University Teaching Assistantship Fellow, University of Utah, SLC, UT
1999-2001 Dept of Biology Teaching Assistant, University of Utah, SLC, UT

PUBLICATIONS (J.S. Sorensen/Forbey authorship in bold, undergraduate authorship indicated with *)
20. Forbey, JS and WJ Foley. 2009 A pharmacological approach to understanding plant-herbivore interactions: an introduction to the Pharm-Ecology Symposium. Integrative and

1 The Working Group comprised of several contributors, including J.S. Forbey. However, TREE limits the number of authors to five.

stephensi) absorbs fewer plant toxins than a generalist (*Neotoma albigula*). Physiological and Biochemical Zoology. 77(1): 139-148.

FUNDING

Current Support

<table>
<thead>
<tr>
<th>Award</th>
<th>$75,000</th>
<th>1/15/11 - 1/15/13</th>
<th>10% effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho Office of Species Conservation 2011</td>
<td>Forbey (PI)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assessing the Dietary Quality of Sagebrush in Sage-Grouse Winter and Breeding Habitats

The overall purpose of this project is to identify the nutritional importance of different sagebrush species in the sage-grouse diet and determine how diet quality influences reproductive success in sage-grouse at various sites in Idaho. The research will meet some of the population and habitat objectives outlined in the Idaho Sage-grouse Conservation Plan and will improve our understanding of sage-grouse distribution and population trends.

<table>
<thead>
<tr>
<th>Award</th>
<th>$5,000</th>
<th>12/22/10 - 8/31/11</th>
<th>5% effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho EPSCoR REU program 2010-11</td>
<td>Forbey (subaward); Kristina Gehlken undergrad</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Developing Tools to Remotely Sense the Quality of Sagebrush in Response to Climate Change

This research will develop spectral biomarkers for dietary attributes in sagebrush. The undergraduate will use NIR models and remote sensing capabilities to develop models that can predict the dietary quality of sagebrush in the field. These models will provide a rapid, predictable tool to define and assess shifts in the nutritional and chemical attributes of plants across landscapes related to changes in climate.

<table>
<thead>
<tr>
<th>Award ID: LO9AC15385</th>
<th>$13,940</th>
<th>06/01/09 - 06/01/10</th>
<th>10% effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM-CESU</td>
<td>Forbey (PI)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutritional and chemical quality of winter diets selected by sage-grouse

This research will investigate both nutritional and chemical factors that drive selection of sagebrush for food by sage-grouse during the winter. The ultimate goal is to identify functional habitat use by sage-grouse and will provide land managers with insight based on nutritional ecology of sage-grouse that will compliment existing efforts to conserve and restore quality sagebrush habitat.

<table>
<thead>
<tr>
<th>Award ID: LO9AC16253</th>
<th>$38,988</th>
<th>02/01/10 - 09/30/11</th>
<th>10% effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLM-Challenge Cost Share</td>
<td>Forbey (PI)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nutritional and chemical quality of winter diets selected by pygmy rabbits
The purpose of this project is to gain an understanding of how the chemical and nutritional quality of sagebrush influences the diet selection and potential habitat use of pygmy rabbits in the sagebrush steppe.

PRESENTATIONS, CONFERENCES AND WORKSHOPS

2010

2009

2008
Invited Speaker: Department of Natural Resource Sciences, Washington State University and Department of Fish & Wildlife Resources, University of Idaho, "Behavioral, physiological and biochemical offenses of mammalian herbivores against plant chemical defenses"

2008
Presentation: Pediatric Academic Societies’ Annual Meeting in Honolulu, Hawaii, May 3–6, Hawaii Convention Center, “Morphine analgesia and developmental kinetics in 3 to 18 year old children”

2008
Presentation: 5th Annual Pediatric Research Conference, University of Utah, Salt Lake City, UT, “Morphine analgesia and developmental kinetics in 3 to 18 year old children”

2008
Invited Poster: Regional Center for Excellence National Meeting for Biodefense and Emerging Infectious Diseases Research, Chicago, IL “The Translational Critical Path Initiative (TCPI) Catalyzes Discoveries into Products”

2007
Workshop: Working Group 29: Herbivory; ARC/NZ Vegetation Function Network; Workshop at The University of Sydney

2007
Invited Speaker: Department of Biology, Boise State University, “Ecology Meets Pharmacology: Mechanisms and Consequences of Toxin Exposure in Mammalian Herbivores”

2007
Invited Speaker: Annual Rocky Mountain Regional Center for Excellence for Biodefense and Emerging Infectious Diseases Research, Fort Collins, CO. “From Ideas to Products: How the Translational Development Subcommittee, Intellectual Property Subcommittee and Cores Work For You”

2006
Invited Lecture: University of Utah, “Preclinical Research in Drug Discovery and Development”, Salt Lake City, UT

2005

2005
Invited Speaker: NPS Pharmaceuticals, "Pharmacological foundations in ecology: the complementary nature of human-drug interactions and plant-herbivore interactions", Salt Lake City, UT
2005 Invited Speaker: Department of Biological Science, California State University, “Toxin tolerance in mammalian herbivores: mechanisms, constraints and implications for human benefit”, Fullerton, CA
2005 Invited Speaker: Department of Biological Science, University of Montana, “Trade-offs of dietary specialization in a mammalian herbivore”, Missoula, MT
2004 Invited Speaker: AgResearch Invermay & University of Otago, “The role of regulated absorption of toxins in herbivores and the biocontrol of brushtail possums”, Dunedin, New Zealand
2004 Invited Speaker: Third International Conference of Comparative Physiology & Biochemistry in Africa: Animals and Environments, “Mammalian herbivores modify foraging patterns to regulate exposure to plant secondary metabolites”, Ithala Game Reserve, KwaZulu-Natal, South Africa
2004 Invited Speaker: James Cook University, School of Tropical Biology, “No free toxic lunch- tradeoffs of dietary specialization in mammalian herbivores”, Cairns, Queensland, Australia

SYNERGETIC ACTIVITIES
2010-present Faculty mentor for undergraduates involved in NSF STEP, NSF EPSCoR, NIH INBRE, NSF LSAMP programs
2010-present Elected as member of Sigma Xi, The Scientific Research Society.
2009 Student mentor program for undergraduates, graduates and postdocs at the Society for Integrative and Comparative Physiology Symposium: “PharmEcology: Integrating Ecological Systems and Pharmacology”
2008 Volunteer field leader for Small Mammal Trapping during BioBlitz, Boise, ID

COLLABORATORS AND OTHER AFFILIATIONS
Collaborators: J. Bryant (University of Alaska); R. Boyle (University of Tasmania); M.D. Dearing (University of Utah); J. Connelly (Idaho Department of Fish and Game); W.J. Foley (Australian National University); S. Haley (University of Utah); M Horn (California State University, Fullerton); K. Keilland, University of Alaska, Fairbanks; J.G. Lamb (University of Utah); K.J. Marsh (Australian National University); S. McLean (University of Tasmania); B. McLeod (AgResearch Invermay); J.D. McLister (Indiana University South Bend); A. Poore (University of New South Wales); R. Proteau (Oregon State University); J. Rachlow (University of Idaho); D. Raubenheimer (Massey University); L. Shipley (Washington State University); R. Tanquay (Oregon State University); C.A. Turnbull (Westminster College); M. Wisdom (Eastern Oregon USDA Forest Service)
Graduate and Postdoctoral Advisors: Ph.D. Advisor: M.D. Dearing (University of Utah); Postdoc Advisors: W.J. Foley (Australian National University); S. McLean (University of Tasmania); B. McLeod (AgResearch Invermay)
Thesis Advisees (5): Major advisor for Amy Ulappa Jamie Utz, Graham Frye; Thesis Committee Member: John Okeeffe; Robert Miller, Jessie Sherburne, and Katie Oelrich
Postdoctoral Scholars Sponsored: Dr. Xinzhu Pu from China Aug 2010-Oct 2011
Morgan Giddings, Ph.D.
212 Wild Turkey Trail, Chapel Hill, NC 27516
Tel: 919-969-1473 giddings@unc.edu

EDUCATION

Post-doctoral training, University of Utah, Salt Lake City, UT 1998-2001
Department of Human Genetics
Bioinformatics and Proteomics, Prof. Raymond F. Gesteland’s laboratory

Post-doctoral training, University of Wisconsin, Madison, WI 1997-1998
Department of Chemistry
Focus on Bioinformatics, Prof. Lloyd M. Smith’s laboratory

Ph.D., University of Wisconsin, Madison, WI 1991-1997
Department of Chemistry, Advisor Prof. Lloyd M. Smith
Thesis title “Computational Methods in Automated DNA Sequencing”

M.S. University of Wisconsin, Madison, WI 1989-1991
Department of Computer Science
Focus on artificial intelligence, computer vision, and numerical methods

B.S., University of Utah, SLC, UT 1985-1989
Physics Department
Cum Laude degree in Physics, with a minor Computer Science

PROFESSIONAL EXPERIENCE

Associate Professor, The University of North Carolina at Chapel Hill, Chapel Hill, NC 2009-present
School of Medicine, Department of Microbiology and Immunology and joint appointment in Biomedical Engineering, Focus on bioinformatics, proteomics, and genomics. Supervising a diverse research group of 11 people including bench and computational post-docs, graduate students, and staff.

Adjunct Associate Professor, The University of North Carolina at Chapel Hill, Chapel Hill, NC 2009-present
Department of Computer Science
Appointed by vote of comp Sci faculty

Adjunct Assistant Professor, The University of North Carolina at Chapel Hill, Chapel Hill, NC 2007-2009
Department of Computer Science,
Appointed by unanimous vote of computer science faculty.

Assistant Professor, The University of North Carolina at Chapel Hill, Chapel Hill, NC 2002-2009
Departments of Microbiology & Immunology and Biomedical Engineering
Focus on bioinformatics, proteomics, and genomics. Supervising a diverse research group of 11 people including bench and computational post-docs, graduate students, and staff.

Research Associate, University of Utah, SLC, UT 1998-2001
Department of Human Genetics, Gesteland-Atkins Labs
Bioinformatics research in antisense prediction, recoding event analysis, and proteomics. Supervision of three employees and two graduate students.

Director, FFFractionation Inc, SLC, UT 1997-2001
The company produced instruments for particle separations based on Field Flow Fractionation technologies. It was sold in 2001.

The company was formed to explore the feasibility of manufacturing kayaks and related products from recycled plastics. I performed strategic planning, fund-raising, managing personnel, and performing research on manufacturing goods using post-consumer plastics. Poynette, WI.
Consultant, Third Wave Technologies, Madison, Wisconsin 1993-1997
The company produces various RNA-based diagnostic kits. I developed software to model RNA folding and structure.

Independent Research, SLC, UT 1990-1992
Work with Dr. Nigel Bamford, developing software to analyze EEG traces using fractal calculations to predict seizure foci in epileptic patients. Presented and won first place in the resident research competition at the annual Tri-State Pediatric Neurology Society Meeting, 1996.

Programmer, University of Utah 1987-1990
Department of Chemistry, under supervision of Dr. J. C. Giddings
Developing deconvolution methods for particle separation in field flow fractionation.

Tutor, University of Utah, SLC, UT 1986-1987
University of Utah Tutoring Center.
Tutoring fellow students in physics, math and computer science

OTHER EXPERIENCE AND PROFESSIONAL MEMBERSHIPS

Member, US HUPO 2006-present
Member, AAAS 1999-present
International Society for Computational Biology 1999 - 2007
Wrote a funded DOE proposal as a graduate student: 1996
Data analysis system for DNA sequencing (PI: L. Smith)
Co-author of funded proposal to the State of Wisconsin: 1994
Recycling feasibility grant for kayak manufacturing.
Independent research analyzing EEG traces with fractal dimension for seizure foci. 1990 - 1992

HONORS AND AWARDS

K22 Genome Scholar Award, NIH/NHGRI 2000

BIBLIOGRAPHY

Books and Chapters
4. Giddings, M.C., Genome Fingerprint Scanning for Protein Identification and Gene Finding.

Refereed Papers/Articles

Original Research

University of Utah primarily with the support of my genome scholar award, HG00044. This paper was recommended on Faculty of 1000.

Other Peer Reviewed Articles

1. Wisz MS, Khatun J, Giddings MC: Computational methods enabling genome-based protein identification from large, complex genomes using mass spectrometry data. In: Third IEEE Workshop on Genomic Signal Processing and Statistics (GENSIPS): 5/22/05 2005; Newport, RI: IEEE Signal Processing Society; 2005. This paper was reviewed by two anonymous peers and revised according to their instructions before acceptance into the proceedings.

Editorials or Letters

Unpublished Oral Presentations and/or Abstracts

2. “Using proteins to find out which transcript are translated, to locate new genes, and to find new splice variants”, ENCODE Consortium International Teleconference, August 2010.

10. “Mining post-translational modifications from mass spec data sets: There is much left to learn”, WUSTL, Saint Louis, MO, November 2008, Invited.
15. “All you ever wanted to know about software for biology”, Carolina Center for Genome Sciences Faculty Meeting, April 2006, Invited.
20. “Linking Proteome to Genome Using Genome Fingerprint Scanning”, PittCon, Invited Symposium Speaker, Feb 2005

33. “Sense, Antisense, and Neurons”, University of Wisconsin Department of Computer Science, April, 2000, Invited.

34. “Analysis of Antisense Oligodeoxynucleotides Based on Sequence Motif Content to Predict Effectiveness,” RECOMB 2000, Tokyo, Japan (poster).

Other Un-refereed Works

1. BaseFinder Version 6. Downloadable from http://bioinfo.med.unc.edu/Downloads/index.html. This software was originally developed by me from 1991-1997 while a graduate student in Dr. Lloyd Smith’s lab at UW-Madison, bringing it to version 5. Development was resumed in 2005 by my lab, after beginning a collaboration with Dr. Kevin Weeks, UNC Chemistry Dept. We have thoroughly updated the software, fixed substantial bugs, significantly enhanced the user interface, and added new processing/analysis tools for analysis of RNA structure data produced by SHAPE chemistry, resulting in Version 6. It is in extensive use by the Weeks lab, and there is substantial interest in the community for this tool once the SHAPE-capable version is released. This development effort is supported by an R01 grant AI068462 (Weeks, PI).

distribution capability, shotgun/bottom-up data analysis, many bug fixes, a new user interface on our website, and more. **Over 40,000 lines of code.** We have had strong interest from many groups since its announcement, 3 of whom are now using it (in Washington state, France, and California). This software development is supported by an R01 grant, RR20823 (Giddings, PI).

3. **Protein Cleavage and Modification Engine.** http://proclame.unc.edu. Released 2004. This software predicts post-translational modifications on proteins from intact mass spectrometry data. Since original publication in *Analytical Chemistry*, software has undergone numerous improvements in user interface, usability, flexibility, and speed. We also have developed a standalone version that can be used as part of a high-throughput pipeline at the request of collaborators at Pacific Northwest National Laboratories. The next version is being worked on, and will incorporate use of Markov Chain Monte Carlo methods.

4. **Genome-based peptide Fingerprint Scanning (GFS), Version 1.** http://gfs.unc.edu. Version 1 provided a novel means for identifying proteins from mass spectrometry data, by directly searching whole genome sequences, bypassing the limitations (or absence of) annotations. However, it had several limitations: it could only process peptide mass fingerprint data, it could only work on small genomes (yeast or smaller), and was not cluster capable. Nonetheless, there was substantial interest and use in the community.

TEACHING RECORD

Lecturer, UNC Chapel Hill, GMB 643
2007-present
I was one of the founding members of this new course, intended to introduce biologists to informatics methods. I taught three lectures on proteomic data analysis, and supervised a student project in this area.

Instructor, UNC Chapel Hill, GNET 210/711
2003-present
“Sequence Analysis Methods”. This one credit hour module that I developed covers information theory and DNA/RNA sequence analysis methods, including hidden Markov models, stochastic grammars, and neural networks. It is comprised of nine lectures of one and a half hours each, homework assignments, and a final exam. It is the lead module in the series of 7 BCB modules, which were the brainchild of Dr. Todd Vision and Myself. This module consistently receives excellent ratings from students.

Instructor, UNC Chapel Hill, GNET 310
2005
Program in Bioinformatics and Computational Biology Colloquium
I led this one credit hour course with a focus on papers from the computational proteomics field.

Lecturer, UNC Chapel Hill, Microbiology 135
2004
This course provides an introduction to microbiology. I gave 2 lectures and a homework assignment on the topics of bioinformatics and proteomics.

Lecturer, UNC Chapel Hill, BME 101
2002-2004
Annual lecture on Microbial Proteomics for this survey course.

Lecturer, UNC Chapel Hill, Biology 162 (Computational Genetics)
2002
“Neural Network Models for Bioinformatics”.

Instructor, University of Wisconsin-Madison, Comp Sci 302
1989-1990
I was solely responsible for teaching a 3 credit hour introductory programming course (CS 302) in ‘C’ and FORTRAN. Two semesters. University of Wisconsin Department of Computer Sciences.

TA/Lab instructor, University of Wisconsin-Madison
1990-1991
“Introduction to Computers” course, required for non computer science majors. University of Wisconsin Department of Computer Sciences.

RESEARCH MENTORSHIP & THESIS COMMITTEES

Post-Docs

Dr. Serguei Simonov
2010-present
Dr. Simonov received his PhD from the Russian Academy of Science Computing, department of Mathematics/Computer Science, where he specialized in the Theory of programming high-performance computations. He will assist in the coordination of the data analysis pipeline for our ARRA funded project, Generating and Managing Large Scale Proteogenomic Data for ENCODE Cell Lines, and will be involved in the ‘top-down’ mass spectrometric experiments for gaining more complete transcript coverage.

Dr. Maarten Leerkes 2009-present
Dr. Leerkes received his PhD in 2004 for developing computational methods for transcriptome and genome analysis, and has since worked as a post doctoral scholar at the NCI building pipelines for transcription analysis, and since 2008 as the senior manager for Bioinformatics at Theranostics Health, developing phosphoproteomic data analysis pipelines. He is currently working on the data analysis pipeline for our ARRA funded project, Generating and Managing Large Scale Proteogenomic Data for ENCODE Cell Lines.

Dr. Hsun-Cheng Su 2005-present
Dr. Su is a former post-doc of Dr. Clyde Hutchison's lab, who joined my lab when Dr. Hutchison joined the Venter Institute. With extensive molecular biology experience, Dr. Su is presently heading up my wet lab, including an examination of antibiotic tolerance and resistance in P aeruginosa. In 2008, Dr Su was promoted to research associate.

Dr. Jainab Khatun 2004-present
Dr. Khatun has diverse training including physics, math, computer science, and biochemistry. She is presently developing new algorithms for improved analysis accuracy of mass spectrometry data. In 2008 she was promoted to Research associate.

Dr. Rajarajeswari Balasubramaniyan 2006 - 2007
Dr. Balasubramaniyan is now in a post-doc position with Dr. Cynthia Gibas at UNC-Charlotte.

Dr. Mack Crayton 2003 - 2005
Dr. Crayton is now faculty at Xavier University of New Orleans

Dr. Michael Wisz 2002 - 2005
Dr. Wisz co-founded a start-up company, Emergent Inc., and is the Chief Technology Officer

Current Graduate Students 2005-present
Stuart Jefferys
Curriculum in Genetics and Molecular Biology and Bioinformatics and Computational Biology Program, 3rd year, developing a Markov Chain Monte Carlo approach for analyzing post-translational modifications on proteins.

Former Graduate Students 2003 - 2009
Kevin Ramkissoon
Microbiology & Immunology and IBMS. (present position)

Suzy Vasa 2006 - 2009
Biomedical Engineering and Bioinformatics and Computational Biology Program, performed her thesis work under my supervision, graduated and now working as a Research Bioinformatician at SRA International http://www.linkedin.com/companies/sra-international.

Jameson Miller 2005 - 2008
Computer Science and Bioinformatics and Computational Biology Program. In his fourth year, Jameson was offered and accepted a position at Microsoft Research, so he did not complete his PhD.

Dongmei Yang 2003 - 2004
Computer Science Master’s Student (University of North Texas), performed her thesis work under my supervision, now a full-time staff member of my lab.

Chris Maier 2005 - 2006
Information and Library Science masters student, performed his thesis work under my supervision, graduated and now holding a staff position in my lab.
Kristen Dang
Biomedical Engineering Student, Kristen is now working on her Ph.D. under direction of Dr. Christina Burch at UNC

Thesis Committees
Amy Webb
Curriculum in Genetics and Molecular Biology, supervisor Dr. Kirk Wilhelmsen.
2007-present

Andrea O’Hara
Curriculum in Genetics and Molecular Biology, supervisor Dr. Dirk Dittmer, studying small RNA molecules associated with viral infection.
2007-present

Suja Thomas
Biomedical Engineering, supervisor Dr. Todd Vision, studying new methods for phylogenetic inferencing. She received her Phd in 2010.
2006 - 2010

Bradford Powell
MD/PhD program and Curriculum in Genetics and Molecular Biology. Dr. Powell recently finished his MD training and is in a pediatric residency at U. Florida Gainesville.
2002 - 2005

Greg James
University of Utah Biomedical Engineering Dept. Master’s thesis committee member. Greg is now working for Applied Biosystems.
2001 - 2002

GRANTS
(Active)

NIH/NCRR 5-R01-RR020823-04-06 (295k/yr, 25% effort)
9/01/09 – 10/31/11
Pt: Giddings, Software to Identify Post-translational Modifications From Proteomic Data Sets
This award is a Recovery Act Administrative Supplement, NCRR ARRA Supplement to grant 5 R01 RR020823 - Software to Identify Post-translational Modifications From Proteomic Data Sets. The major focus of this supplement is to accelerate progress on this work by developing a complete software package with user interfaces, installer & help manual and generating an extensive data set for thorough vetting & testing of the program.

NIH/NHGRI 1 RC2 HG005591-01 (800k/yr, 20% effort)
9/26/09 – 6/30/11
Co Pt: Giddings, Generating and Managing Large Scale Proteogenomic Data for ENCODE Cell Lines
The purpose of the award is to generate, manage, analyze and disseminate large scale data sets for protein-based annotation of the human genome. Working in concert with other investigators in the ENCODE (ENCylopedia Of DNA Elements) Dr. Giddings’ team will be working to produce a complete map of the genes on the human genome, that can be used to address a variety of human disease states.

2 R01 HG003700-04 (450k/yr, 32.5% effort)
04/10/09 - 03/31/12
Pt: Giddings, Developing Proteogenomic Mapping for Human Genome Annotation
This is a competing continuation of our genome annotation project, using proteomic data to inform where genes located on the human genome, and which /when transcripts get translated into proteins.

NIH/NCRR 2 R01 RR020823 (225k/yr, 32.5% effort)
12/15/07 – 11/30/11
Pt: Giddings, Software to Identify Post-translational Modifications From Proteomic Data Sets
This competitive renewal of R01 RR020823 is to combine our software packages PROCLAME and GFS to identify post-translational modifications from heterogeneous mass spectrometry-derived data sets.

NIH/NHLBI 1 P50 HL 084934-01 (5% effort)
9/15/06-7/31/11
Pt: Boucher, SCCOR in Host Factors in Chronic Lung Disease, Core D: Diagnostic Molecular Microbiology Core.
The goal of the Diagnostic Molecular Microbiology Core is to provide sensitive and reproducible methods for detecting, identifying and quantifying polymicrobial infections in respiratory specimens. Specifically, the Core will develop a high-throughput technique termed terminal restriction fragment length polymorphism (T-RFLP) to identifying bacterial species and measuring bacterial community diversity associated with respiratory disease. In addition, the Core will provide comprehensive multiplex RT-PCR assays for the identification of respiratory
viruses and provide reagents and methods for quantifying viral infections and for conducting viral challenge studies.

(Completed)

NIH/CFAR R01 AI068462-01 (250k/yr, 10% effort)

PI: Weeks, Structure of the HIV-1 Genome

This proposal is to further develop the SHAPE RNA structure determination chemistry co-jointly with software development of BaseFinder (Giddings lab), applying them together to determine the complete structure of the HIV-1 viral genome. This is listed as “completed” because we finished the collaboration on this work.

NIH/NHGRI, R01 HG003700 (317k/yr, 25% effort)

PI: Giddings, Developing Software for Protein-Based Gene Finding. Collaboration with Dr. M. Brent, Washington University

The major focus of this proposal is to combine our protein identification software GFS with gene-finding software TWINSCAN to produce a reliable, automated protein-based gene finding system.

NIH/NCRR, R01 RR20823-01 (250k/yr, 30% effort)

PI: Giddings, Developing Genome Fingerprint Scanning for Proteomics

This project is to develop our Genome Fingerprint Scanning (GFS) software as a community resource for genome-based identification of proteomic samples. This is to continue work begun under my K22 award, HG00044 after completion.

Amer. Heart Association 051537OU (20k/yr, 0% effort, supervisor)

Sponsor, Investigation of Adaptive Evolution in Enterococci-curbing the Emergence and Persistence of Antibiotic Resistance. PI: Ramkissoon

The goal of the proposed research is to investigate the specific mechanisms of compensatory evolution in Enterococcus faecium that exhibit resistance to the clinically important antibiotic streptomycin.

NIH/NHGRI HG00044, Genome Scholar Award

PI: Giddings, Computational methods for proteomic analysis.

Development of computational analysis methods for support of high-throughput proteomics, with focus on their role in furthering the study of genomes.

NSF/MCB

Developing Genome Fingerprint Scanning for Tetrahymena

This grant was to develop GFS as a resource specifically to serve the Tetrahymena research community, by developing and supporting the website for Tetrahymena research usage.

DOE/UT-Battelle subcontract 4000018979

PI: Buchanan, Sub-project in Giddings Lab: Data Driven Proteomics for the Genomes to Life Program (Sub with UT-Battelle/ONL)

The focus of this work is to apply data driven proteomics tools to the data obtained in the genomes to life program implemented at ORNL and at PNL.

PROFESSIONAL SERVICE

Technical Program Committee, GENSIPS 2004-2007

Annual Genome Signal Processing conference sponsored by IEEE.

Reviewer, NIH Study Sections 2002, 2005

- Served on BDMA study section in October 2005, was invited to return as permanent member, but declined due to pre-tenure obligations.
- Served on Bioanalytical Chemistry study section in 2002, invited to return, but declined due to pre-tenure obligations.

Reviewer, NSF Panels 2003

Reviewer for two panels involving Computational Biology and Bioinformatics Proposals
Program Committee, Technology for Life Conference 2004
NC Symposium on Biotechnology & Bioinformatics
Session chair, Genomics and Proteomics

Reviewer, Various Journals ongoing
Regular reviewer for Bioinformatics. Ad hoc reviews performed for *Journal of Proteome Research, Nucleic Acids Research, Nature Biotechnology, BMC Bioinformatics*.

PROFESSIONAL SERVICE, UNC

Program in Bioinformatics and Computational Biology 2002-2009
- Co founder, 2002
- Member of Curriculum and Progression Committee, 2002-present
- Member BCB Executive Committee, 2006-2009.
- Student Progression Director, 2006-2009, In charge of tracking progress of all students, developing a plan of study for them, and obtaining feedback for program improvement.
- Admissions Committee, 2002-2003

Computational Resource Coordinating Committee for Genomics and Bioinformatics 2002-2003
Member of committee convened by Vice Chancellor Waldrop to identify computational resource needs for the campus.

Michael J. Hooker Proteomics Facility 2002-2009
Computational Advisor

Biomedical Engineering Department 2002-2009
- Curriculum Committee, 2002-03
- Admissions Committee, 2002-03
- Computer Resources Committee, 2004-2009

Dept. of Genetics, Search committee for senior bioinformatics researcher 2004
Chaired by Prof. Pat Sullivan
Jeffrey W. Habig
5044 W. Banker Drive, Boise, ID 83714
Phone: (208) 863-1555 E-mail: jeffreyhabig@boisestate.edu

Education

Howard Hughes Medical Institute
Postdoctoral research fellow
University of Utah
10/03 – 07/08

University of Wisconsin - Madison
Ph.D. in Cancer Biology and Virology
McArdle Laboratory for Cancer Research
09/98 – 09/03

Colorado State University - Pueblo
(Body University of Southern Colorado)
Biology, chemistry, and physics curriculum
02/96 – 05/98

Gustavus Adolphus College
B.A. in Computer Science with a minor in Philosophy
09/87 – 05/91

Professional / Research Experience

Research Assistant Professor
2011-present
- LC/MS-based identification of cellular factors involved in stable inheritance of the Epstein-Barr virus genome during replication of latently infected B lymphocytes.
 PI on grant funded by MSTMRI and collaborating with group at UW-Madison.
- Identification of cellular proteins associated with capsids and virions from secreted hepatitis B virus using LC/MS-based proteomic approaches.
- Using computational biology (agent-based modeling and evolutionary search techniques) to elucidate plausible biological mechanisms underlying the complex process of regeneration in the flatworm, planaria. Co-PI on NSF grant with collaborators at BSU and Tufts University.

Director of Mass Spectrometry Facility
2011-present
Department of Chemistry and Biochemistry, Boise State University
- Support research utilizing LC/MS techniques.
- Proteomic and metabolomic analysis of the methionine salvage pathway in bacterial pathogens in collaboration with Dr. Ken Cornell.

Research Scientist
2008-2010
Crowley Davis Research, Inc.
- Research and development of cell-based computational modeling and virtual wet-bench platform for use as a research and educational tool.
- Developing models of the hallmarks of cancer and introducing them into high school and undergraduate classrooms in collaboration with the University of Minnesota, Masonic Cancer Center.
- Developing models in the areas of regeneration, development, and cell-fate determination in collaboration with the University of Minnesota, Harvard University, Tufts University, and the Environmental Protection Agency.
- Developing a model of cell-fate determination during vulva development in the nematode, *C. elegans*.
- Combining evolutionary search techniques (genetic algorithms) with pathway, cell, and tissue modeling.
- Participating in management team to develop business and investment plans, marketing strategies, and grant proposals.

Postdoctoral Fellow 2003-2008
Dr. Brenda Bass, Howard Hughes Medical Institute (University of Utah)
- Investigated the intersection and competition of cellular pathways (e.g. RNAi, miRNA, and ADARs) for dsRNA within cells of the nematode, *C. elegans*.
- Combined microarrays, bioinformatics, and molecular biology to establish a relationship between RNAi and the innate immune response in *C. elegans*, and to show proper X-chromosome regulation is dependent upon the microRNA-processing enzyme, Dicer.
- Generated an *in vivo* animal model to study the individual steps involved in RNA interference in *C. elegans*. This model has led to the characterization of the double-stranded RNA binding protein, RDE-4, as a sensor to activate RNAi in the presence of low concentrations of double-stranded RNA. It has also led to the identification of the rate-limiting step of RNAi, showed that double-stranded RNA processing is affected by environmental conditions, and showed that siRNAs can enter into the miRNA pathway in *C. elegans*.
- Presented research findings in the Biochemistry Department seminar series, the *C. elegans* research in progress seminar series, and weekly lab meetings.

Graduate Student 1998-2003
Dr. Dan Loeb, University of Wisconsin - Madison
- Investigated the molecular mechanism of replication and reverse transcription of the cancer causing hepatitis B virus (HBV), using *in vitro* cell culture systems and the Peking duck animal model; identified and characterized intramolecular interactions and sequences within the viral genome that contribute to multiple steps during viral replication.
- Presented research findings at the International Molecular Biology of HBV Meetings: Oral presentation in 1999 and poster presentation in 2001. Presented research findings during the Oncology Departmental seminar series, as well as during weekly lab meetings.
- Wrote and published four first-author manuscripts.

Summer research program (REU) summer 1998
Dr. Thomas Day, Arizona State University
- Investigated the effect of changes in growth temperature on rates of photosynthesis and respiration of the two vascular plants native to Antarctica.
- Presented research at ASU departmental symposium.
Student in Master’s program

Dr. Dan Caprioglio, Colorado State University-Pueblo

- Investigated the role of an aminopeptidase, YIN-7, in the budding yeast, Saccharomyces cerevisiae, using molecular biology approaches including flow cytometry.
- Presented research at two scientific meetings (CO Springs, Grand Junction)

Executive Director and Incorporator

Greater Arkansas River Nature Association, Salida, CO (www.garna.org)

- Helped establish a nature association that served as an interdisciplinary scientific organization designed to support governmental agencies in fundraising, stewardship, and natural resource education.
- Conducted meetings of the Board of Directors.

Systems Software Analyst

West Publishing Company, Eagan, MN

- Contributed to design and maintenance of the software framework.
- Trained and supported a large group of application programmers.

Teaching experience / Academic appointments

Boise State University Boise, ID 2009-present
Adjunct Faculty – Biology Department
- Taught the core Cell Biology course multiple times. This course was designed to introduce students to molecular, cellular, and developmental processes with a focus on analytical and critical thinking.
- Taught a special topics course in Virology. The course covered the molecular biology and pathogenesis of viruses. Course focused on critically reading and understanding primary literature. Student projects included Perl programming, physician/technician shadowing, and literature reviews related to virology.

Westminster College Salt Lake City, UT Fall 2007
Adjunct Faculty – Biology Department
Taught a course called “The Natural World” to undergraduate, non-science majors at a local liberal arts college. The course was designed to provide students with an appreciation of science and its impact on society. It was a unique opportunity as I team taught the course with an instructor trained in a separate discipline, riparian ecology.

University of Utah Salt Lake City, UT Fall 2006
Adjunct Faculty – Department of Biochemistry
Designed and team-taught course on the emerging “Mechanisms of Post-Transcriptional Gene Regulation.”

University of Wisconsin - Madison Madison, WI Spring 2002
Teaching Assistant – BioCore undergraduate research program
Assisted in an honors biology track course for undergraduates. Course used primary literature to introduce students to the fields of (1) cancer immunology (2) host/pathogen interactions (3) cellular aging and (4) cervical cancer. I held two weekly discussion sessions, prepared and graded quizzes, tests, and worksheets.

Colorado State University - Pueblo
Pueblo, CO
1997 – 1998
Teaching Assistant – Chemistry department
Taught the lab sections for “Introduction to Chemistry” and “General Chemistry”. Responsibilities included lecturing, overseeing experimentation, and assessment.

US Forest Service
Pueblo, CO
Summer 1997
Community education – Taught bear and mountain lion safety courses for the USFS in campgrounds and remote backpacking sites.

Greenway & Nature Center
Pueblo, CO
1996 – 1998
Community education outreach - Managed the local chapter of the RiverWatch program in association with the USGS. Monitored the chemical and biological health of the Arkansas River, and trained volunteers to conduct chemical and biological assays.
- Served as an instructor for summer eco-camps designed to introduce students to their natural surroundings.

Mentoring experience

Boise State University
Boise, ID
2009 – present
Advisor
Currently mentoring a research student who is interested in pursuing medical school. Shared my experiences, advised, and wrote letters of recommendation for students interested in pursuing graduate, medical, or technical school.

Crowley Davis Research
Eagle, ID
Summer 2009
Scientific mentor
Co-mentored two summer interns for the summer. Oversaw experimentation and modeling of tissue development.

University of Utah
Salt Lake City, UT
1999 – 2006
Scientific mentor
Mentored the research of several first-year graduate students, and a technician. Co-authored separate manuscripts with a graduate student, a technician, and a post-doctoral fellow.

University of Wisconsin – Madison
Madison, WI
1999 – 2006
Scientific mentor
Mentored the research of an undergraduate student whose work served as the foundation for a future publication and helped her gain acceptance into medical school at Cornell. Also mentored several first year graduate students.
Publications

Habig JW, Dale T, and Bass BL, miRNA Editing – We Should Have Inosine This Coming. Molecular Cell, 2007, 25:792-793. (authors contributed equally).

Patent Applications

Awards and Professional Activities

- Received notification of acceptance of our NSF CDI grant entitled “A computer framework for modeling complex pattern formation” (CoPI - awaiting official award 2011 - 2014).
- Recipient of a grant from Mountain States Tumor & Medical Research Institute (2011-2012).
- Elected member of the Mountain States Tumor & Medical Research Institute (MSTMRI, 2011)
- Selected to be pre-med summer fellowship mentor (summer 2011)
- Current member of the Association of Biomolecular Resource Facilities (ABRF).
- Invited speaker: Environmental Protection Agency (cell fate modeling, 2009).
- Invited speaker: Boise Science Café (stem cells, 2009).
- Invited speaker: Treasure Valley Math and Science Center (cancer mechanisms, 2009).
- Invited speaker: Boise State University (modeling as a tool in research and education, 2009).
- Member of American Society for Cell Biology (2008 – present).
- Manuscript review for peer-reviewed journals.
- Recipient of two travel awards and oral presentation award for the International Meeting on the Molecular Biology of Hepatitis B Virus.
- Co-founder of the McArdle Laboratory for Cancer Research Student and Postdoc Data Club.
- Co-founder of the “Howard Temin Lecture Series” at the University of Wisconsin – Madison.
- Member of the American Association for the Advancement of Science (1998 – 2006).
- Recipient of “Best Student Oral Presentation” award at Tri-Beta Regional Scientific Conference (Summer 1998, CO Springs).

Technical Skills

- **Molecular Biology**: HPLC and mass spectrometry, microarray probing and analysis (Affymetrix), total and poly(A) RNA isolation (RNase Free conditions), RT-PCR, real-time quantitative PCR (Roche Lightcycler), RNA interference (RNAi), RNase protection, northern and Southern blotting, miRNA and siRNA isolation and detection, *in vitro* transcription and translation, DNA and plasmid isolation, molecular cloning (Gateway cloning and site directed mutagenesis), DNA and RNA sequencing, primer extension, expression and purification of recombinant proteins from bacteria, western blotting, gel shifts, thin layer chromatography, and radioisotope usage.
- **Cellular and Animal Biology**: maintenance and propagation of tissue culture cell lines, transfection of cell lines, fluorescent microscopy, virus production and purification, flow cytometry of yeast (FACS) and fluorescent sorting of whole worms (Worm sorter), genetic screens, generating transgenic worms (mating and...
microinjection), and maintaining *C. elegans* transgenic strains, bacterial and fungal pathogen and longevity studies.

- **Computer Skills:** Bioinformatics and genomics software development in the scripting languages Python/Perl/Bioperl; Scientific applications include LaserGene, Roche LightCycler, ImageQuant, NCBI Blast/GenBank, GeneSifter, Bioconductor/R, mFold, DNAFold, Babelomics/GO, Wormbase, and modeling software (Endogenics); Blackboard educational package.
Greg Hampikian
E-mail: greghampikian@boisestate.edu
208-781-0438

Education
Ph.D. Genetics, The University of Connecticut, 1990
M.S. Genetics, The University of Connecticut, 1986
B.S. Biological Sciences, The University of Connecticut, 1982

Experience
2006-present
Professor of Biology, with a joint appointment in Criminal Justice, Boise State University (BSU), (Associate Professor, August 2004-2006).
Graduate and undergraduate courses: Forensic Biology, DNA Evidence in Cold Cases, Advanced DNA Analysis, Biotechnology, Cell Biology, Genetics.

2006-present
Founder and Director of the Idaho Innocence Project at Boise State University.
Volunteer position. Raised more than $300,000 through grants and donations, organized a Legal Advisory Board with leading lawyers, supervise staff: a full time lawyer, six volunteers, and student interns. Currently working on 10 Idaho cases.

2002-present
DNA Expert for the Georgia Innocence Project
Analyze forensic evidence, assist in legal proceedings, testify, work with and train students. Involved in four exonerations, two of which resulted in the arrests of new suspects more than 20 years after the crime.

1993-2004
Professor, Biology, Clayton State University (CSU)
(Assistant Professor 1993-97, Associate Professor, 1997-2003)
Coordinated the Forensic Science Track for biology major. Courses: Biotechnology, Biotechnology Lab, Genetics, Human Genetics (on-line), Recombinant DNA Laboratory, Bioregulatory Affairs, Microbiology, Microbiology Lab, Anatomy and Physiology (A&P) sequence, A&P Labs, Sex and Reproduction, Introductory Biology (majors and non-majors sequence), Introductory Biology Labs, Biotechnology for teacher education students.

2004
Chair of the Georgia Academic Advisory Committee for Biological Sciences
The Committee included department heads of all Georgia public colleges and universities; coordinated curriculum review, organized corporate partnerships, and responded to the -evolution challenge in public schools.
2003-2004
Grants Coordinator for the School of Arts and Sciences, CSU
Organized a consortium of six area school systems, wrote two multimillion dollar NSF Math/Science Partnerships proposals.

2001-2002
Biology Coordinator, Natural Science Department, CSU
Wrote a successful degree proposal for new Bachelor of Science in Biology, which includes tracks in Forensic Science, Biotechnology/Biocomputing, Bioregulatory Affairs/Science Management. Hired five new faculty members.

2000
First Presidential Faculty Fellow, CSU
Helped coordinate new majors proposals; acted as faculty liaison to campus departments.

1997-1998
National Science Foundation Research Opportunity Award, Georgia Tech, Biochemistry Dept., Research Faculty Member
Enzymatic nucleotides, and chromatin structural changes caused by anti-cancer drugs, with Loren Williams.

1994-1995
Visiting Scientist, Emory University and The Centers for Disease Control and Prevention (CDC), Atlanta
Sex-determination in malarial mosquitoes with John Lucchesi, Biology Department Chair, Emory University; and Frank Collins of the CDC.

1992
Worcester Foundation for Experimental Biology, Postdoctoral Associate with William Crain
Gene expression in mouse embryogenesis, toxicity of antisense therapies on pregnant mice.

1990-1991
U.S. National Science Foundation, Postdoctoral Fellow with Jennifer Graves, La Trobe University, Australia
The sequence and expression of mammalian sex-determining genes.

1986-1990
Ph.D. thesis with Linda Strausbaugh, The University of Connecticut
Transcriptional regulation of tagged histone genes in relation to the cell cycle in synchronized culture cells. Instructor in the Summer Institute of Molecular
Biology, secured all funding for course from corporate sponsors.

1985-1986
Master's research with Paul Goetinck, University of Connecticut.
Cartilage Link protein c-DNA.

1983-1984
Yale University, School of Medicine, New Haven, Conn.
Research assistant, human keratins and drug response, psoriasis research with Joseph McGuire, Head of Pediatric Dermatology.

Publications

―Exit to Freedom,‖ Johnson and Hampikian (University of Georgia Press, 2003): Calvin C. Johnson, Jr.'s autobiography (written by Hampikian). The true story of a man who served 16 years in Georgia prisons for a rape he did not commit until DNA evidence freed him. Afterward by Barry Scheck. Awarded the 2004 Silver Medal in biography, (ForeWord Magazine's Book of the Year Awards).

- Nominated for the 2004 Robert F. Kennedy Book Award.
- Nominated for the 2004 African American Literary Awards.

Patent Applications

US Patent application: a DNA marker to be added to samples as a safeguard. The oligomers are based on sequences not found in GenBank, and can be coded to contain a wide variety of information, Hampikian inventor, Dec. 23, 2003.

Professional Memberships

- American Academy of Forensic Sciences, workshop leader.
- International Society for Forensic Genetics, presenter.
- International Society for Computational Biology.
- American Society for Cell Biology, presenter, education committee member, pre-doctoral grants reviewer.

Recent Professional Education

SNP analysis of physical characteristics (ie., eye color) as well as ancestry. HITA/AABB Workshop, International Symposium on Human Identification, San Antonio Texas, October 10, 2010.

Pacific Symposium on Biocomputing, Hawaii, 2007: ―Computational Proteomics‖.

Li-Cor DNA sequencing training for the Li-Cor 4300, Boise State University, 2005.

On-site evaluator training Forensic Science Education Programs Accreditation

Forensic Science for Medicolegal Professionals Course (co-organizer), Atlanta, 2004.

Grants, Contracts and Awards

Department of Justice, PI, Wrongful Prosecution Review Program, $195,705 2010-2012.

Department of Defense, PI, DNA Safeguard, DNA barcodes to protect forensic samples, new anticancer compounds, $1,100,000, 2010-2011.

Angora Ridge Foundation, PI, Idaho Innocence Project, $70,000, 2008-2009.

Department of Defense, PI, DNA Safeguard, DNA barcodes to protect forensic samples, new anticancer compounds, $1,200,000, 2009.

IOLTA Grant, PI, Idaho Innocence Project, $25,000, 2008.

Department of Defense, PI, DNA Safeguard, DNA barcodes to protect forensic samples, $1,000,000, 2006-2008.

Environmental Protection Agency, Co-PI, —Developing and demonstrating multi-purpose sensor to detect and analyze contaminants,” Biosensors and LTCC Devices to Detect Biowarfare and Biosafety agents, Co-PI responsible for $150,000 of a $1,590,000 grant, 2005.
National Science Foundation, Co-PI, NSF-Idaho EPSCoR Instrumentation Acquisition Program, $30,000 for ABI 310 Capillary Electrophoresis, Ferris and Hampikian, 2005.

Environmental Protection Agency, PI, seed grant, Biosensors, PCR Detection of Biowarfare and Biosafety Agents using Novel Materials, $22,000, 2004.

Li-Cor Education Award Program, PI, $50,000 match for new sequencer, (matched by departments of Biology, Chemistry, and Materials Science), 2004-2005.

Improving Teacher Education, PI, the Biotechnology and Forensic Science Curriculum, program included funding for 22 teachers and 300 student participants. Teachers spent 50 hours in an intensive laboratory experience over the summer, and the students spent a full day at the University preparing DNA fingerprints, $35,000, 2004-2005.

National Science Foundation, Education Specialist, Loblolly Pine Genome sequencing project. Coordinated the education portion of this successful $1.2 million grant. Students and faculty from CSU, as well as teachers and high school students participated with faculty from the Institute of Paper Science and Technology, PI John Cairney, 2003.

Eisenhower Award, Forensic Science with Molecular Botany, PI for High and Middle School teachers, 22 teachers participated, 250 students worked in campus laboratories to develop DNA fingerprints, $26,000, 2002-2003.

Eisenhower Award, PI of Forensic Science Curriculum and DNA fingerprinting for High School teachers, $23,000, 2001-2002.

National Science Foundation, Research Opportunity Award, to work with Dr. Loren Williams of Georgia Tech on enzymatic nucleic acids and intercalating agents, $19,000, 1998.

Georgia Board of Regents Model Technology Grant, PI Computer Modules for Biotechnology, $20,000, 1998.

Faculty Development Grant (CSU), PI, to develop Computer Activities for Microbiology Lab, $2,250, 1998.
Georgia Board of Regents Model Technology Grant, PI, to develop videos for on-line Human Genetics course, $18,000, 1998.

Eisenhower Award, Co-PI, Strengthening Elementary Teachers Knowledge of Math, Science and Technology, $32,000, 1997-98.

Faculty Development Grant (CSU), PI, to develop Web-Based Activities Bridging College and Pre-College Science, $2,600, 1997.

Eisenhower Award, PI, the Molecular Biology Laboratory for Educators, summer course for teachers, $17,000, 1996-97.

National Science Foundation USA, Instrument and Laboratory Improvement, PI, The Cooperative Laboratory in Biotechnology, Clayton State College, matched by: Board of Regents Technology Grant, $60,000, 1994-97.

Eisenhower Program Summer Institute in Math and Science Excellence, co-authored proposal, recruited faculty participants who were funded for $70,000, 1995.

National Science Foundation U.S.A., Postdoctoral Fellowship Centers of Foreign Excellence, twenty-five awarded nationally. Sex-determination research, La Trobe University, $45,000, 1991-92.

Howard Hughes Medical Institute, scholarship to attend the Cold Spring Harbor Laboratory course, Large DNA Molecules, $1,500, 1990.

Corporate Support and Partnerships

Bio-Rad Forensic Biology for Teachers, Atlanta Georgia, Two Day Laboratory, $12,000, 2009.

Bio-Rad Child ID Clinic, DNA fingerprints for parents and children, $2,000, 2006.

Qiagen Travel grant for participation at the AAFS 2006 meeting, $2,000, 2006.

Qiagen EZ-1 robot for processing DNA from human remains, graduate student support, materials, $25,000, 2005.

Kodak DC210 system in DNA analysis, $7,000, 1998.

Kodak EDS digital analysis of DNA for beta test, $6,000, 1996.

Fisher Scientific Support for biotechnology at CSU, $4,000, 1996.

Meetings organized, professional workshops and courses offered

Ada County Sheriff’s Office, 3-hour DNA workshop for crime lab personnel, March 21, 2008.

Nampa Crime Lab, 3-hour DNA workshop for crime lab personnel, February 14, 2008.

(Innocence Project), March 25, 2007.

Boise State University, “Hands-on Forensic Biology and DNA Fingerprinting.” This course was approved by the Idaho State Bar, Idaho Nurses Association, and the State of Idaho Peace Officer Standards and Training for Continuing Education Credits, 8.5 hour lab course, 10 participants including coroners, police officers, lawyers, October 20, 2006.

The University of Connecticut, Director and Instructor of —Forensic Science for Educators," graduate course, Molecular and Cell Biology 396-40, Variable Credits (2-3). Course for 16 teachers funded by Bio-Rad, with Professor Linda Strausbaugh, July 7-9, 2005.

Continuing Legal Education (CLE) workshop, Atlanta, GA, —Forensic DNA for Lawyers,” June 7, 2005.

Sun Valley, ID CLE workshop: —DNA evidence interpretation," for the Idaho Criminal Defense Lawyers, Annual Meeting. Two workshops given, 2-hours, 60 participants, March 11, 2005.

CSU Laboratory Workshop, Atlanta, GA, —Forensic DNA,” 2004.

NSTA Annual Convention, laboratory course: —Forensic Biotechnology
Laboratory for Teachers,” Hampikian and Burke, Atlanta, April, 2004.

GA Indigent Defense Council, Atlanta, GA (Sci-Trek), DNA Basics,” Continuing Legal Education (CLE for lawyers), September, 2003.

Georgia Indigent Defense Council, Atlanta, GA, DNA evidence: emerging technologies for legal professionals,” continuing legal education (CLE) course for lawyers, 2003.

GA Indigent Defense Council, Thomaston, GA, CLE workshop: DNA: The Law & The Science,” (CLE for lawyers), 2003.

Amer. Soc. for Microbiology, (Pomona, CA), Education Division meeting, Computer workshop: technology seminar for microbiology teaching academics,” invited presentation, workshop for members, 2000.

Presentations, panels and posters

Federation of European Biochemical Societies, Yerevan, Armenia, February 16-20, 2011, Genomic Instability advanced lecture course, invited speaker, panel moderator.

Pacific Symposium on Biocomputing, Hawaii 2009, Keynote presentation: “‘DNA Don't Lie': How Bioinformatics freed some of my best friends, and sent the guilty to prison.”

American College of Trial Lawyers (ACTL), Idaho, New Uses of DNA Evidence,” Arid Club, ACTL Fellows and their guests, June 28, 2008.

International Society for Environmental Epidemiology (ISEE), Central & Eastern Europe Conference on Health and the Environment, New sensor
developments at the Boise State University Center for Environmental Sensing,”

**DNA in Forensics: Bi-annual meeting of the International Society for
Forensic Genetics (ISFG),** Greg Hampikian and Michael Davis, "Basque DNA in
Idaho: the Origin and Frequency of Mitochondrial Haplotypes in Immigrants to a
Northwestern American State," Ancona, Italy, oral presentation by G. Hampikian,
May 29, 2008.

University of Washington Law School, panel discussion with "Hurricane

NCBI, National Institutes of Health: "Novel Applications in Forensic DNA:
Nullomers, Primes," research seminar, Bethesda Maryland, February 20, 2008.

18th International Symposium on Human Identification, "STR Variation in the
Immigrant Basque Population of Southwest Idaho," Micheal Davis, Jayita

American Academy of Forensic Sciences, Annual Meeting, Michael Davis
and Greg Hampikian, "Median Network Analysis of mtDNA Haplotypes in the

American Society of Microbiology 107th General Meeting, Jason R.
Besecker, Korey Moeller, Ken Cornell, and Greg Hampikian, "Development of a
Bioterrorism Agent Multiplex PCR for Use in a Novel Ceramic Biodetector,"

American University in Paris, "DNA and Justice," College Lecture, and 2
laboratory presentations, October 23, 24, 2007.

Centre Technique De La Gendarmerie Nationale, Institut de recherche
criminelle de la gendarmerie Nationale, Cergy Pontoise, France, research
presentation, October 21, 2007.

American Society of Microbiology 107th General, Toronto, Canada, poster
Jason R. Besecker, Korey Moeller, Ken Cornell, and Greg Hampikian,
—Development of a Bioterrorism Agent Multiplex PCR for Use in a Novel Ceramic

**Proceedings of the International Conference on Ceramic Interconnect and
Ceramic Microsystems Technologies, Denver, CO,** poster, K. Moeller, J.

Biomedical Research Infrastructure Network (BRIN) Workshop, —NA analysis in the application of justice”, Boise State University, July 23, 2005.

The Center for Advanced Genetics Technologies at the University of Connecticut, —Ethics in the genetics class: But why is it wrong?,” Invited seminar for Forensic Science for College Educators,” Storrs, CT, July 12, 2005.

Court TV, —Idaho and Georgia Innocence Projects,” invited presentation for producers and reporters, Manhattan, July 11, 2005.

Innocence Project at the Benjamin N. Cardozo School of Law, New York, —Forensic DNA: questions and answers on current Innocence Project cases,” July 11, 2005.

Georgia Innocence Project, —NA evaluation in post-conviction cases," seminar for law interns, Atlanta, June 8, 2005.

University of Connecticut, —NA fingerprints and civil rights," invited Talk for the, DNA and Civil Liberties course, in conjunction with the dedication of the new Center for Applied Genetics Technology forensic laboratory, April 29, 2005.

105th General Meeting of the American Society for Microbiology, Atlanta, GA, —Aromatic Inhibition of Bacterial Growth by Volatiles from Extracts of Ginger, Wintergreen, Cinnamon, Patchouli, Eucalyptus, Geranium, and other Plant Sources, Alone and in Combination,” G. Hampikian, N. DeWane, A. Brooks, and J. Strong, poster, 2005.

Boise State University, —DNA in the Courtroom," invited talk, April 2004.

Georgia State University, —DNA and the first test of the new Georgia preservation law," Biology Department Seminar, February 20, 2004.

Harvard University, —Forensic DNA: freeing the innocent and rewriting history," June 2003.

Georgia State University, —Using DNA to solve crimes and free the innocent," Biology Seminar, April 25, 2003.

Georgia State University, —DNA in the courtroom: the evidence of presence," Guest lecture for Introduction to Law 3020 class at the J. Mack Robinson College
of Business, April 17, 2003.

The Materials Information Society ASM, Georgia chapter, Georgia Tech, —NA, the ultimate memory material," December 12, 2002.

American Society for Microbiology (99th general meeting, Chicago), —Virtual tools for the microbiology laboratory," Hampikian and McClain, computer presentation, 1999.

Collaborative Approach in Improving Science Education and Research (CAISER) consortium, Emory University, —Collaborative Microbiology and the Web," Hampikian and McClain, Atlanta, GA, 1998.

Georgia Institute of Technology, Biochemistry Department, —Trapping enzymatic nucleotides using PCR,” 1997.

Georgia Conference on College and University Teaching, —Mastering technology through student interdependence,” computer video presentation, 1996.

The American Institute of Biological Sciences, —The Cooperative Laboratory in Biotechnology,” San Diego, invited speaker, 1995.

Emory University —Experiments on sex-determination in the mosquito,” research talk, Biology Department, 1995.

Centers for Disease Control and Prevention (CDC), —Sex-determination and the prevention of malaria: reproducing the work of Bridges in the mosquito,” hosted by Dr. Nora Berzansky and Dr. Frank Collins, 1995.

Georgia Conference on College and University Teaching, —Active learning approaches in critical thinking,” computer video presentation, 1995.

Piedmont College Graduate Education Program, —2,000 years of biology in 4 hours,” invited talk, 1995.

Emory University —Sex-determination mechanisms, a molecular view,” invited talk, 1993.

MRC Human Genetics Unit, Edinburgh, Scotland, —Possible roles of SRY deduced from DNA motifs,” invited talk, 1992.
Massachusetts General Hospital, Harvard University, —Lessons from the marsupial Y chromosome,” Cambridge, invited talk, 1992.

USDA, Bethesda, MD, —Controlling gender, the prospects for transgenic regulation,” invited talk, 1992.

Undergraduate Research Presentations:

BSU undergraduate research conference, —Analysis of the forensic science outreach program,” Chuck Cato, Becky Munoz, (undergraduates), Holli Shultz (graduate student in biology) and Greg Hampikian, poster, 2005.

American Society for Microbiology, 5th Undergraduate Education Conference, Atlanta, GA, —Comparison of digital gel analysis systems,” Hampikian and Hardwick (undergraduate presenter), 1998.

Examples of School Outreach
National educational outreach directed by Greg Hampikian
• **Georgia Science Teachers**, Forensic DNA and Biotechnology Workshop, Sept. 15 and 16, 2008, Georgia State University. 20 teachers from Georgia Schools, **Sponsoring Institutions**: Georgia State University's Bio-Bus Program; Boise State University Outreach; Bio-Rad; Howard Hughes Medical Institute's Undergraduate Science Education Division. The High School Curriculum in Forensic Science has received national recognition from Good Morning America, The Wall Street Journal, Fox news and others.

• **Atlanta Area Science Teachers**, Forensic DNA and Biotechnology Workshop, Sept. 17 and 18, 2007, Georgia State University, 27 teachers from Georgia Schools, **Sponsoring Institutions**: Georgia State University's Bio-Bus Program; Boise State University Outreach; Bio-Rad; Howard Hughes Medical Institute's Undergraduate Science Education Division.

• **AAAS** American Association for the Advancement of Science, 88th Pacific Northwest Annual Meeting, Molecular Biology for High School Teachers, 2 Day workshop with Bio-Rad, June 20 and 21, 2007 teachers from around the Northwest.

• **Atlanta Forensic Science Day**, in conjunction with the US Army Criminal Investigation Laboratory, 500 Students, 26 teachers, participated in the first Forensic Science Day, May 25, 2005, (program repeated in 2006). The Forensic Science Day follows 50 hours of laboratory activities for teachers, and is followed by sustained contact between teachers and university and forensic experts. With support from BIO-RAD.

• **Connecticut**, Forensic Science and Biotechnology for Teachers in Conjunction with Center for Applied Genetics Technology, sponsored by BIO-RAD, University of Connecticut, 30-hour intensive lab course, 22 teachers, July 7-10, 2005.

• **Confratute, teachers conference**, —Forensic activities,” workshop for teachers of gifted children, Storrs, CT, 48 teachers, July 12, 2005.

• **University of Connecticut**, “Undergraduate educators workshop in forensic science,” laboratory course, Department of Molecular and Cell Biology, 12 undergraduate professors, July 12-14.

• **NSTA** Short course: —Forensic Biotechnology Laboratory for Teachers,” National Science Teachers Association Annual Convention, laboratory course, Hampikian and Burke, Atlanta, April, 2004, 6 hours, 23 teachers from around the country.

Idaho Science Teachers Workshops/Presentations
- Forensic Science and Evolution in the High School Classroom, October 6 and 7, 2005 at Boise State, sponsored by a grant from Bio-Rad, 7 teachers.

Examples of over 40 Workshops for Idaho Partnership Schools can be seen at http://biology.boisestate.edu/hampikian

Student Development

Clayton State Biology Research Scholars: initiated program, sponsored student researchers at the CDC, 1994-1996.

Frontiers in Science Seminar Series: developed and secured funding to invite visiting scientists to the CSU campus, secured grants totaling over $10,000 to support this program. Invited 20-30 speakers each year (1996-2004). Format: students interview speakers, read papers in preparation, perform introductions, and follow-up with visits to the speaker's lab and a written report. Many students have gone on to fellowships, jobs, or graduate school with their guests, 1996-2004.

Conflict and Consensus Program: an "anti-debate" format developed at CSU in which opposing parties of local and national renown are brought to common ground, mediated by student teams. The program has been incorporated into the critical thinking curriculum. Participants have included presidential candidate Allen Keyes, and Pulitzer-Prize winner Cynthia Tucker (Atlanta Journal, PBS). Secured grants of more than $11,000 to support this program.

Curriculum Development

Forensic Evidence in Cold Cases: Criminal Justice course with graduate and undergraduate sections (2008-), service learning component added in 2009.

Biotechnology: graduate seminar course covering breaking developments in
applied biotechnology, 2008.

Advanced DNA Analysis: course with graduate and undergraduate sections focusing on new applications of DNA analysis, 2005.

Forensic Biology: course with graduate and undergraduate sections, also crosslisted in Criminal Justice, 2004.

Forensic Science for Teachers: course for teachers organized in conjunction with the US Army Criminal Investigation Laboratory at Fort Gillem, Eisenhower funded, 2001.

Bioregulatory Affairs: a unique university course developed for Applied Biology major, Fall, 2001.

Applied Biology Major: proposal author for new University BS program, approved 2000.

Forensic DNA Science for High School Students: host 50-80 high school students each year for a full day of DNA fingerprinting, and molecular biology laboratories, 1997-2004.

Science internship program: developed and coordinate program, supervised students each semester, oversaw outplacement of all biology interns, 1997-2004.

Forensic DNA Teaching Curriculum: high school curriculum developed with Dr. Henry Lee and area high school teachers, 1994.

Current Committee Work

Chair, Concordia Law School in Boise, Chair of Committee on Relationships with Government, Other Educational Institutions and the Community.

Member, Graduate Studies Committee, Biology Department, Boise State University.
Member, BSU College of Arts and Sciences Outreach Committee.

Grant reviewer, BSU College of Arts and Sciences, for faculty grants Biology

Member, Biology Undergraduate Committee, scholarship committee: rewrote scholarship application.
Charles Hanna
Professor and Chair of Physics
Boise State University
Boise, Idaho 83725-1570
Tel: (208) 426-3775 Fax: (208) 426-4330 channa@boisestate.edu

Education
Ph.D. Physics, Stanford University, 1990
M.S. Physics, Yale University, 1982
B.S. Mathematics and Physics, Yale University, 1982

Employment
(2009 – present) Chair of Physics, Boise State University
(2004 – 2009) Associate Chair of Physics, Boise State University
(2004 – present) Professor of Physics, Boise State University
(2001 – 2004) Associate Professor of Physics, Boise State University
(1996 – 2001) Assistant Professor of Physics, Boise State University
(1990 – 1993) Postdoctoral Researcher, IBM Research Division

Research Interests (primarily theory and computation)
Nanoscale physics and biophysics
Bose-Einstein condensation
Quantum effects in low dimensional and nanoscale electron and boson systems
Effects of interactions between electrons in semiconductor structures
Quantum Hall effect, especially in multi-component systems
Many-body theory and statistical physics

Grants, Awards, and Honors
- “Interactions in Quantum and Biophysical Systems,” NSF Grant No. DMR-0605652, $100,000, 08/15/2006 - 07/31/2008
- W. F. James Chair Professor of Pure and Applied Sciences, St. Francis Xavier University, 2005–2006
- 2005 University Foundation Scholar Award for Research, Boise State University
- Finalist, 2004 University Foundation Scholar Award for Research, Boise State University
- Finalist, 2003 University Foundation Scholar Award for Research, Boise State University
- 2002 Award for Distinguished Research in Science, College of Arts and Sciences, Boise State University
- “Idaho EPSCoR Research Infrastructure Improvement Grant,” NSF Grant No. EPS-0132626 (Boise State Project Coordinator for five investigators), $1.2 million total, 02/01/02-01/31/05
- “Broken-symmetry states of confined interacting electrons,” NSF Grant No. DMR-0206681, $105,000, 07/01/02-06/30/06
- “Nanoscale magnetism in quantum dots,” Research Corporation Grant No. CC5666, $23,683, 07/01/03-06/30/06
• “Quantum coherence and many-body interactions in inorganic and organic nanoscale electronic devices,” Australian Research Council Grant No. DP0558769 (Partner Investigator), 2005-2008

• “Upgrading the Magnetization Measurement Capabilities of an Existing Magnetometer,” Agency: NSF-Idaho-EPSCoR Instrumentation program; Amount: $70,000; Duration: 01/02/04 – 12/31/04; PI: A. Punnoose; co-PIs: C. B. Hanna, W. B. Knowlton, A. Moll, and D. Warner.

• “Proximity effects and new correlated phases in closely spaced quantum electronic devices,” Australian Research Council Grant No. DP0210800 (Partner Investigator), 2001-2003

• “Correlated electrons in multilayer semiconductors,” NSF Grant No. DMR-9972332, $109,000, 07/01/99-06/30/02

• ITP Scholar Award, UC Santa Barbara, 1997-2000

• “Multilayer semiconductor structures in the quantum Hall regime,” Research Corporation Cottrell College Science Award No. CC-4407, $35,000, 1997-1999

• Faculty Research Grant, Boise State University, 1997

• Faculty Research Associates Grant, Boise State University, 1997

• ARCS Fellowship, Stanford University, 1987

• DeForest Prize for Creative Achievement in Physics, Yale University, 1982

Refereed Publications

*Indicates student collaborators

7. “Crucial roles of charged saccharide moieties in survival of gram negative bacteria against protamine revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations” Rafael Oliveira, Emanuel Schneck, Bonnie Quinn, Oleg Konovalov, Klaus Brandenburg,
8. “Electrostatics Interactions Affect Nanoparticle-Mediated Toxicity to the Gram-Negative Bacterium Pseudomonas aeruginosa PA01”

9. “Modeling the solid-liquid phase transition in saturated triglycerides”

11. “The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction”

13. “Case for Discotic Liquid Crystals in Molten Triglycerides”

14. “Modelling electrostatic interactions in complex soft systems”

15. “Van der Waals interactions with soft interfaces”

16. “Evolution of the bilayer ν = 1 quantum Hall state under charge imbalance,”
 W.R. Clarke, A.P. Micolich, A.R. Hamilton, M.Y. Simmons, C.B. Hanna, J.R. Rodriguez*, M. Pepper and D.A. Ritchie,

17. “Measuring the condensate fraction of rapidly rotating trapped boson systems: off-diagonal order from the density,”
 J. Sinova, C.B. Hanna, and A.H. MacDonald,

18. “Rippled state of double-layer quantum Hall systems,”
 C.B. Hanna,

19. “Quantum melting and absence of Bose-Einstein Condensation in two-dimensional vortex matter,”
 J. Sinova, C.B. Hanna, and A.H. MacDonald,
20. “Exchange-driven bilayer-to-monolayer charge transfer in an asymmetric double-quantum-well,”
 A.R. Hamilton, M.Y. Simmons, C.B. Hanna, J.C. Díaz-Vélez*, M. Pepper, and D.A. Ritchie,
 C.B. Hanna, J.C. Díaz-Vélez*, and A.H. MacDonald,
22. “Incommensurate ground state of double-layer quantum Hall systems,”
 C.B. Hanna, A.H. MacDonald, and S.M. Girvin,
23. “Eliminating non-logical states from linear quantum-dot cellular automata,”
 J.C. Lusth, C.B. Hanna, and J.C. Díaz-Vélez*,
24. “Double-layer systems at zero magnetic field,”
 C.B. Hanna, D. Haas* and J.C. Diaz-Vélez*,
25. “Properties of the soliton-lattice state in double-layer quantum Hall systems,”
 C.B. Hanna, A.H. MacDonald and S.M. Girvin,
26. “Spontaneous coherence and the quantum Hall effect in triple-layer electron systems,”
 C.B. Hanna and A.H. MacDonald,
27. “Effect of spin degeneracy on scaling; in the quantum Hall regime,”
 C.B. Hanna, D.P. Arovas, K. Mullen, and S.M. Girvin,
28. Comment on “Contribution of quantum-well states to the RKKY coupling in magnetic multilayers” and reply,
 P. Bruno, C.B. Hanna, * B.A. Jones,
29. “Quantum-well contributions to the RKKY coupling in magnetic multilayers,”
 B.A. Jones, and C.B. Hanna,
 in Magnetic Ultrathin Films. Multilayers and Surfaces, Interfaces and Characterization-
30. “Contribution of quantum-well states to the RKKY coupling in magnetic multilayers,”
 B.A. Jones and C.B. Hanna,
31. “Correlation energy of the anyon gas,”
 C.B. Hanna and A.L. Fetter,
32. “Electrodynamics of a quantum Hall liquid,”
 C.B. Hanna and D.H. Lee,
33. “Single-particle excitation spectrum of the anyon gas,”
 A.L. Fetter and C.B. Hanna,
34. “Quantum mechanics of the fractional-statistics gas: random-phase approximation,”
35. “Conservation laws and anyons: Hartree approximation,”
 A.L. Fetter and C.B. Hanna,
36. “Anyons and superconductivity: random phase approximation,”
 A.L. Fetter, C.B. Hanna, and R.B. Laughlin,
37. “Quantum mechanics of the fractional-statistics gas: particle-hole interaction,”
 C.B. Hanna, R.B. Laughlin, and A.L. Fetter,
38. “Random-phase approximation in the fractional-statistics gas,”
 A.L. Fetter, C.B. Hanna, and R.B. Laughlin,
39. “Dilute Fermi liquid of heavy polarons in copper oxide superconductors,”
 R.B. Laughlin and C.B. Hanna,
 Workshop on Novel Mechanisms of Superconductivity. 1987: 553-62 Plenum, New York,
 NY, USA 0306426919 1987.
40. “Mechanism of current modulation by optic phonons in heterojunction tunneling
 experiments,”
 C.B. Hanna, E.S. Hellman, and R.B. Laughlin,
41. Comment on “Oscillations in the current-voltage characteristics of GaAs-AlGaAs tunnel
 junctions" and reply,
 C.B. Hanna, R.B. Laughlin, and J. Ihm,
42. “One dimensional polaron effects and current inhomogeneities in sequential phonon
 emission,”
 E.S. Hellman, J.S. Harris, C.B. Hanna, and R.B. Laughlin,

Sessions Chaired
1. “Metal-Insulator Phase Transition IV,” Session J21 of the 2002 Annual American Physical
 Society March Meeting
 Society March Meeting

Invited Talks
1. Dalhousie talk
2. James Chair talk
3. “Rapidly Rotating Bose-Einstein Condensates,” St. Francis Xavier University, Department
 of Physics, 11/05/2004
4. “Bose-Einstein Condensates in the Quantum Hall Regime,” Washington State University,
 Department of Physics, 9/21/2004
7. “Electronic Exchange in Multilayer Semiconductors,” University of Idaho, Department of Physics, 4/23/2001
8. “Spontaneous Interlayer Coherence,” University of Georgia, Department of Physics, 1/18/01
9. “Spin and Localization in the Quantum Hall Effect,” Louisiana State University, Department of Physics, 4/11/94
10. “Spin Degeneracy and Scaling in the Integer Quantum Hall Effect,” Purdue University, Department of Physics, 11/18/94
11. “Quasiparticle Charge in a Quantum Hall Liquid,” Princeton University, Institute for Advanced Study, 1/27/93
12. “Fractional Charge in the Fractional Quantum Hall Effect,” Harvard University, Department of Physics, 2/13/92
13. “Anyon Superconductivity,” University of California at Berkeley, Department of Physics, 5/1/91
14. “Superconductivity in the Fractional-Statistics Gas,” Imperial College, Department of Mathematics and Physics, 10/17/89

Contributed Talks
*indicates student collaborators

 (Abstract H36.007, APS March Meeting, Los Angeles, March 22, 2005.)
 (Abstract P28.002, APS March Meeting, Montreal, March 24, 2004.)
 (Abstract B23.015, APS March Meeting, Austin, March 3, 2003.)
 (Abstract A34.002, APS March Meeting, Austin, March 3, 2003.)
 (Abstract B7.008, APS March Meeting, Indianapolis, March 18, 2002.)
 (Abstract G29.002, APS March Meeting, Seattle, March 13, 2001.)

(Abstract E17.012, APS March Meeting, Minneapolis, USA 2000.)

(AAAdvanced Research Workshop on Semiconductor Nanostructures, Christchurch, New Zealand, February 2001.)

Presentations by Students (oral presentations, unless otherwise indicated)

*indicates student collaborators

Courses Taught

- PHYS 105L, Laboratory for Introduction to Descriptive Astronomy
- PHYS 111L, Laboratory for General Physics I (formerly PHYS 101L)
- PHYS 112L, Laboratory for General Physics II (formerly PHYS 102L)
- PHYS 125, Introductory Physics Colloquium
- PHYS 211, Mechanics, Waves, and Heat
- PHYS 212, Electricity, Magnetism, and Optics
- PHYS 295/395, Research in Physics
- PHYS 309, Introductory Modern Physics
• PHYS 381, Electromagnetism
• PHYS 382, Electrodynamics
• PHYS 397, Special Topics (Directed Research in Physics)
• PHYS 412, Introductory Quantum Mechanics
• PHYS 422, Special Topics: Introduction to General Relativity
• PHYS 482, Senior Project
• PHYS 497, Special Topics (Directed Research in Physics)
• PHYS 522, Advanced Topics: Solid-State Physics (graduate level)
• PHYS 593, Thesis Research
• PHYS 596, Graduate Research (graduate level)

Academic Service

1. **Department of Physics:**
 - Department Chair, 2009 – present
 - Associate Chair for Program Development, 2004 – present
 - Chair, Long-Term Planning Committee, 1999 – present
 - Chair, Faculty Search Committee, 1999 – present
 - Library Liaison, 1997 – present
 - Organize Physics Halloween Party for majors and faculty, 1996 – present

2. **College of Arts and Sciences:**
 - Faculty Awards and Honors Committee, 1996

3. **University:**
 - Biomolecular Sciences PhD Planning Committee, 2008 - present
 - Materials Science and Engineering Graduate Affiliate Faculty Committee, 2005
 - Human Resources Committee, 2004
 - Materials Science and Engineering Faculty Search Committee, 2003
 - Materials Science and Engineering Organizing Committee (College of Arts and Sciences and College of Engineering), 2002 to present
 - Chair, Thesis Committee and Thesis Advisor (Boise State University’s first M.S. in Materials Science and Engineering), 2004 - 2005
 - Master's Thesis Committee member (College of Engineering and Interdisciplinary Master's Program), 2000 to present
 - Faculty Search Committee (College of Engineering), 1999
 - Graduate Program Committee (College of Engineering), 1998
 - Chaired *ad hoc* Unix Security Committee, 1997

Professional Service and Affiliations

• Reviewer for the National Science Foundation and the Canadian Research Council
• Member of the American Physical Society
MINOTI HIREMATH
minotihiremath@boisestate.edu
S-124, Department of Biology,
1910 University Drive, MS1515,
Boise, ID 83725
Cell: (718)-213-0000
Office: 208-426-2236
Fax: 208-426-1040

CURRENT POSITION
Research Assistant Professor
January 2011-Present
Boise State University, Department of Biology,
Research: Investigating epithelial mesenchymal interactions regulated by PTHrP and Wnt signaling in embryonic mammary development and breast cancer. Understanding the interactions between Estrogen receptor and PTHrP signaling in the pathogenesis and treatment of breast cancer.

EDUCATION
Post-Doctoral Associate,
November 2007-December 2010
Yale University, New Haven, CT.
Advisor: John Wysolmerski, M.D.

Ph.D Cell Biology,
August 2002- July 2007
New York University School of Medicine, New York, NY.
Advisor: Pamela Cowin, Ph.D.

Ph. D. candidate, Department of Genetics,
August 2001-May 2002
University of Georgia, Athens, GA.

M. B. B. S. (Bachelor of Medicine and Surgery),
August 1995- January 2001
Byramjee Jeejeebhoy Medical College, University of Pune, India

HONORS AND AWARDS:
ASBMR Young Investigator Travel Award, Amount: $500
2011
Travel monies for first authors of abstracts that are highest ranked in their categories.

MSTMRI Small Project Award, Amount $7,500
2011-2012
Crosstalk between PTHrP and Estrogen Receptor in Mammary Development and Breast Cancer.

Department of Defense Postdoctoral Fellowship, Amount: $243,000
2009-2012
Role of Mesenchymal Wnt Signaling in Mediating the Effects of PTHrP in the Mammary Gland.
Department of Defense Predoctoral Fellowship, Amount: $90,000 2003-2006
Beta-catenin and Progesterone in Hormone Receptor Negative Breast Cancer.

RESEARCH EXPERIENCE
Boise State University, Boise, ID 2010-present
Research Assistant Professor.
- Epithelial-mesenchymal interactions in embryonic mammary development.
- Role of stromal Wnt signaling in breast cancer formation.
- Interactions between PTHrP and Estrogen Receptor signaling in breast cancer.

Yale University, New Haven, CT 2007-2010
Postdoctoral Associate, Advisor: Dr. John Wysolmerski
Intersections between PTHrP, Wnt and Bmp signaling during mammary mesenchyme specification and breast cancer.
- Demonstrated regulation of Wnt signaling by PTHrP during embryonic mammary development using transgenic Wnt signaling reporter mice.
- Analyzed requirement for Wnt signaling during mammary mesenchyme specification by deletion of beta-catenin and Lef1.
- Used conditional deletion models to demonstrate the role of BMP signaling during early mammary development

New York University, New York, NY 2002-2007
Graduate Student, Advisor: Dr. Pamela Cowin
Beta-catenin and progesterone signaling in mammary development and breast cancer.
- Demonstrated two populations of beta-catenin responsive cells in the mammary gland that differed in their location and requirement for progesterone signaling.
- Used transgenic and knockout mouse models to demonstrate that progesterone signaling restrains the progression of beta-catenin induced mammary hyperplasias to tumors.

University of Georgia, Athens, GA 2000-2001
Graduate Research Assistant
- Cultured human embryonic stem cells and measured rate of division by BrdU incorporation in the laboratory of Dr. Steven Stice.
- Cloned and analyzed splice variants of Kit ligand mutations in ENU-mutagenized mice in the laboratory of Dr. Mary Bedell.
- Cloned K.Lactis telomeres in the laboratory of Dr. Michael McEachern.

TEACHING EXPERIENCE
Instructor Fall 2011
Boise State University, Department of Biology
Functional and Comparative Anatomy, ZOOL 301
The evolutionary development of vertebrate anatomy, fishes through mammals. Dissection of the shark, salamander, and cat plus demonstrations of other vertebrate types. Contributed to course design, teaching, evaluation, laboratory experimental design and demonstration of dissection.
Co-Instructor with Dr. Julia Oxford.
Spring 2011
Boise State University, Department of Biology
Developmental Biology, BIOL 451/551
A developmental biology course that includes lecture and laboratory components. Contributed to course design, teaching, evaluation and laboratory experimental design.

Lecturer in Yale College Seminar Series
Fall 2010
“Towards a New Understanding of Breast Cancer”, (CSBK231)
A seminar course that aims to explore the connections between molecular and cellular process in relation to breast cancer. Students will develop a better understanding of the biology of breast cancer and its treatment.

Guest Lecturer
Spring 2005
Cell Biology, New York University
Moderated group discussion sessions on Wnt signaling for a small group of graduate students.

Graduate Teaching Assistant
August 2000 – December 2000
Department of Genetics, University of Georgia, Athens, GA
Genetics laboratory course for undergraduate biology majors.
• Taught basic concepts of cellular structure and function and Mendelian genetics.
• Designed and graded exams.

Graduate Teaching Assistant
January 2001 – May 2001
Concepts in Biology (BIOL1103L) laboratory course for undergraduate non-biology majors.
• Taught molecular biology and using model organisms genomics and to illustrate basic biological principles.

Medical Intern
February 1999- March 2000
Byramjee Jeejeebhoy Medical College, Pune, India
• Conducted lectures in rural AIDS education for high school students.
• Taught Anatomy and Physiology to nursing students at Ruby Hall Clinic, Pune, India.

PUBLICATIONS

INVITED TALKS
- March 2011: 53rd Annual Symposium of the Idaho Academy of Sciences, Caldwell, ID.
- June 2010: Boise State University, Department of Biology, Boise, ID.
- October 2009: Young Investigators Meeting, Translational Health Sciences Institute, Cambridge, MA

POSTER PRESENTATIONS

- Hiremath M, Dann P and Wysolmerski JJ (2010). Pthrp-Induced Wnt Signaling Plays A Role In

MENTORING:
Charla Taylor, Summer student, NYU 2004
Rebecca Smith, Intel Science Scholar, Summer Student, NYU 2004, 2005
Rengin Azeglou, Rotating Graduate Student, NYU Spring 2005
Jennifer Fischer, Summer Student, Yale University 2009, 2010
Kelsey Bruch, Undergraduate, Boise State University Summer and Fall 2011
Hannah Dyah, Undergraduate, Boise State University Fall 2011

SERVICE
Panelist, Women in Science seminar at Yale University School of Medicine. October 2010
PROFESSIONAL ASSOCIATIONS
Idaho INBRE (IDeA Network of Biomedical Research Excellence).
Idaho Academy of Science.
New York Academy of Sciences.
American Association for the Advancement of Science.
American Society for Bone and Mineral Research.
Curriculum Vitae—Research
Cheryl L. Jorcyk, Ph.D.
Department of Biological Sciences
Boise State University

Business Address: Home Address:
Boise State University 1207 North 6th Street
Department of Biological Sciences Boise, ID 83702
Science-Nursing Building, Room 227 (208) 331-1174
1910 University Drive
Boise, ID 83725-1515
Office: (208) 426-4287 Lab: (208) 426-4805
E-mail: cjorcyk@boisestate.edu Fax: (208) 426-4267

Education:
1984-1991 Doctor of Philosophy (Biology), The Johns Hopkins University, Baltimore, MD
1979-1983 Bachelor of Science (Biology), Pennsylvania State University, State College, PA

Awards and Societies:
2011 Business Women of the Year Honoree—Idaho Business Review
2008 Health Hero Educator Honoree—Idaho Business Review
1998-present American Association for Cancer Research, Active Member
1998-present American Association for the Advancement of Science, Member
1998-2009 Sigma Xi Scientific Research Society, Boise State University Chapter, Full Member
1998-present Idaho Academy of Science, Member
1995-1997 American Association for Cancer Research, Associate Member
1992-1997 Intramural Research Training Award, Postdoctoral Fellowship, NIH
1982-1983 The Hammond Biological Scholarship and Award

Grant Review Panels:
2011 California Tobacco-Related Disease Research Program (TRDRP), Cancer Study Section.
2010-present Department of Defense (DOD), Congressionally Directed Medical Research Program
 (CDMRP) Breast Cancer Immunology/Endocrinology Panel.
2009 NIH, CSR, Challenge Grant Program, Bioengineering Sciences and Technologies Panel.
2008 Department of Defense (DOD), Congressionally Directed Medical Research Program
 (CDMRP) Prostate Cancer Immunology Panel.
2008 Department of Defense (DOD), Congressionally Directed Medical Research Program
 (CDMRP) Prostate Cancer Pathology Panel. Ad-hoc Reviewer.
2007-2010 California Breast Cancer Research Program (CBCRP), Pathology Study Section.
2006 Veterans Administration (VA) Merit Grant Program. Ad-hoc Reviewer.

Patents and Patent Disclosures:

Professional Experience:

2010-present Affiliate Associate Professor, Department of Microbiology, Molecular Biology, and Biochemistry (currently being reorganized), College of Agriculture and Life Sciences, University of Idaho, Moscow, ID.

2007-2010 Director of Undergraduate Studies, Department of Biological Sciences, Boise State University, Boise, ID.

2003-present Associate Professor, Department of Biological Sciences, Boise State University, Boise, ID. Determination of the role on the cytokine oncostatin M in tumor progression and metastasis.

2001-2009 Affiliate Member, Chronic Illness Research Center (formally called the Cancer Prevention and Research Center, Washington State University, Pullman, WA.

1998-present Affiliate Member, Cancer Research Section, Mountain States Tumor and Medical Research Institute (MSTMRI), Boise, ID.

1997-2003 Assistant Professor, Department of Biology, Boise State University, Boise, ID. Elucidation of molecular mechanisms involved in tumor progression utilizing mouse prostate and mammary cell lines.

1995 Instructor, Frederick Community College, Frederick, MD. Lecturer for a Nutrition class; involved the complete organization and teaching of this course.

1994 Instructor, Frederick Community College, Frederick, MD Lecturer and Laboratory Instructor for Introductory Biology; consisted of two 75-minute lectures and one three-hour lab section per week.

1992-1997 Postdoctoral Fellow with Dr. Jeffrey E. Green, Laboratory of Molecular Oncology, NCI, NIH, Frederick, MD. Studying prostate cancer and tumor progression by the establishment of cell lines from transgenic mice expressing SV40 large T-antigen. Utilizing the transgenic mice as a model for immunotherapy treatment of prostate and mammary cancers. Studying the function of the cellular oncogene, Ets-1, by utilizing 1) homologous recombination in ES cells to produce mice lacking a functional Ets-1 protein; 2) mice producing transgenic Ets proteins.

Recent Publications: Peer-reviewed Publications: (from a list of 37 published or in press)

Aranda, P.S. and Jorcyk, C.L. Simple agarose gel for analyzing RNA quality. Submitted to *Electrophoresis*.

Sutherland, C., Tawara, K., Bolin, C., and Jorcyk, C.L. Novel mouse mammary cell lines for bioluminescence imaging (BLI) of bone metastasis. In preparation for *Biological Procedures*.

Current Research Support:

Susan G. Komen for the Cure KG100513 (Jorcyk, PI) 6/21/2010 – 6/20/2013
Susan G. Komen Breast Cancer Research Program $600,000
Analysis of oncostatin M in breast cancer metastasis to bone for the purpose of inhibiting disease progression.

ACS RSG-09-276-01-CSM (Jorcyk, PI) 7/1/2009 – 6/30/2013
American Cancer Society Research Scholar Grant $720,000
Breast cancer metastasis to the bone: the role of oncostatin M.

NIH NCI R15CA137510 (Jorcyk, PI) 4/1/2009 – 3/30/2012
Oncostatin M-induced VEGF in human breast cancer is $211,500
HIF1α-mediated.

NASA NNX10AN29A (Jorcyk, Co-PI) 10/01/2010 – 9/30/2013
Molecular mechanisms of cellular mechanoreception in bone. $749,916

NIH NCRR P20RR016454 (Bohach, PI; Jorcyk, Team Member) 4/1/2009 – 3/31/2014
Idaho IDEa Network for Biomedical Research Excellence. Total = ~$15,000,000
Col11a1 function during development, structure and signaling is to address osteoblast-osteoclast cell signaling.

MISE (Cornell, PI; Jorcyk, Collaborator) 4/1/2008–3/31/2011
Merck Institute for Science Education $60,000
Merck AAAS Undergraduate Science Research Program

HERC Idaho State Board of Education (Jorcyk, Co-PI) 7/01/2007 – 6/30/2011
Muscloskeletal Research. (Last year is no cost extension) ~$1,000,000

Pending Grants:

W.M. Keck Foundation (Jorcyk, Co-PI) 7/01/2007 – 6/30/2011
Medical Research/Science and Engineering Research Programs $1,000,000
Synthetic DNA reactions for low-cost diagnosis and treatment of disease. (In Phase II)

Research Completed (since 2003):
J.A. & Kathryn Albertson Foundation (Jorcyk, PI) 01/02/99 – 06/30/03
General operating expenses. $500,000 total; Jorcyk Lab, $176,660
Graduate and undergraduate fellowships for cancer research.

M.J. Murdock Charitable Trust (Jorcyk, PI) 05/01/02 – 01/31/04
Partners in Science Program. $14,000
Characterization of genes involved in the prostate cancer to metastasis conversion.

NIH P20 RR16454 (Jorcyk, PI) 09/01/02 – 08/31/03
NIH/NCRR ~$35,000
Oncostatin M enhances metastatic potential.

Boise State University (Jorcyk, PI) 05/01/03 – 04/30/04
Faculty Research Initiated Grants $5,000
Oncostatin M-treated breast cancer cells stimulate new blood vessel formation.

Mountain States Tumor and Medical Research Institute (Jorcyk, PI) 05/12/03 – 05/11/04
Seed Grant Program $5,000
Effects of neutrophil-derived oncostatin M in a breast tumor environment.

NIH R01 CA104470 (Jorcyk, Collaborator; Magnuson, PI) 09/01/03 – 08/31/08
Contribution of Pim-1 kinase to cell survival. N/A

M.J. Murdock Charitable Trust (Jorcyk, PI) 05/01/04 – 01/31/06
Partners in Science Program. $14,000
Determination of the receptor utilized by oncostatin M to promote metastatic characteristics in MDA-MB-231 breast cancer cells.

Sigma Xi (Jorcyk, PI) 05/01/04 – 04/30/05
Grants in Aid Program. $2,000
Induction of epithelial cell-secreted proteases by neutrophil-derived oncostatin M.

Mountain States Tumor and Medical Research Institute (Jorcyk, PI) 05/12/04 – 05/11/05
Seed Grant Program $5,000
Determination of the receptor utilized by OSM to promote metastatic characteristics in T47D human breast cancer cells.

NIH P20 RR16454 (Jorcyk, Investigator; Laskowski, PI) 07/01/04 – 06/03/09
NIH/NCRR (Jorcyk) $395,000
Oncostatin M induces VEGF in human breast carcinoma cells.

NIH R15 CA106274 (Jorcyk, PI) 03/01/05 – 02/28/08
NIH/NCI $186,893
Oncostatin M induces VEGF-mediated angiogenesis.

Boise State University (Jorcyk, PI) 07/01/05 – 06/30/06
Faculty Research Initiated Grants $15,000
Determination of a role for oncostatin M in breast cancer metastasis to bone.

Mountain States Tumor and Medical Research Institute (Jorcyk, PI) 05/01/07 – 04/30/08
St. Luke’s/Seed Grant Program $5,000
Development of OSMR-beta mouse mammary carcinoma cell lines.
NIH, ITHS (Jorcyk, PI) 05/01/09 – 04/30/10
Small Pilot Project Translational Grant $14,000
The role of tumor cell-derived oncostatin M in breast cancer metastasis to bone.

Mountain States Tumor and Medical Research Institute (Jorcyk, PI) 05/01/09 – 04/30/10
Seed Grant Program $7,500
Knockdown of OSM-induced HIF1alpha by RNAi.

MSTMRI (Jorcyk, Collaborator; Yu, PI) 05/01/09 – 04/30/10
Seed Grant Program $7,500
Myeloid-derived suppressor cell (MDSC) gene expression in normal tissue versus metastatic breast cancer.

Invited Speaker Presentations (since 2003):

Oncostatin M: promoting the phenotype of metastatic breast cancer, University of Texas at San Antonio, San Antonio, TX, April 16th, 2004. *National.*

Neutrophil-derived oncostatin M: potential implications for breast cancer progression, Idaho State University, Department of Biological Sciences, Pocatello, ID, November 17th, 2005. *Regional.*

Breast cancer research at Boise State University, Boise State Foundation Board, Boise State University, Boise, ID. July 20th, 2006. *Local.*

Oncostatin M is a potential target for inhibiting breast tumor metastasis. AAAS (American Association for the Advancement of Sciences) Pacific Division Annual Conference, Waimea, HI, June 18th, 2008. *Regional.*

The role of oncostatin M in breast tumor progression and metastasis. The Peter MacCallum Cancer Centre Anderson Lab, Melbourne, Australia, November 18th, 2008. *International.*

The role of oncostatin M in breast tumor progression and metastasis. 3rd Annual Workshop for Small Animal Imaging, St. Louis, MS, June 21st, 2009. *National.*

A role for oncostatin M in breast cancer metastasis to bone. University of Idaho, Department of Microbiology, Molecular Biology, and Biochemistry, Moscow, ID, April 29th, 2010. *State.*

Thesis Advisor for Masters Students:
- Lynda Zhang M.S. in Biology, July 30, 2000
- Kurt Lindsay Received M.D. from Oregon Health Sciences Institute, 2005
- Colin Soares M.S. in Biology, March 22, 2002
- Ryan Holzer M.S. in Biology, March 12, 2003
- Marisa Queen M.S. in Biology, March 11, 2005
- Alex Ide M.S. in Biology, March 16, 2005
- Amanda Bruesch M.S. in Biology, September 14, 2007
- David Chang Commodities Trader
- Patrick Aranda M.S. in Biology, October 7, 2009
- Ken Tawara Current M.S. student; thesis defense March 23, 2011
- Madhuri Nandakumar Current M.S. student
- Hunter Covert Current M.S. student
- Jordan Koncinsky Current M.S. student
- Jake Goyden Will start M.S. program Fall 2011

Department of Biological Sciences Graduate Student Thesis Committees:
- Michael Davis (Dr. Troy Rohn)
- Sorcha Cusack (Dr. Julie Oxford)
- Ryan Medeck (Dr. Julie Oxford)
- Jodie Newman (Dr. Troy Rohn)
- Tim O’Donnell (Dr. Bob Rychert)
- Amy Couch (Dr. Henry Charlier)
- Alma Hodzic (Dr. Denise Wingett)
- Nathan Hoskins (Dr. Julie Oxford)
- Kendra Coonse (Dr. Julie Oxford)
- Ming Fang (Dr. Julie Oxford)
- Ashley McCartney (Dr. Kristen Mitchell)
- Stephanie Wyler (Dr. Kristin Mitchell)
- Emily Schmid (Dr. Kristen Mitchell)

Graduate Student Thesis Committees from other Universities:
- Kyle Rosenke Ph.D. from University of Idaho (Dr. Lee Fortunato), August 9, 2006

Postdoctoral Fellows:
- Dr. Sujatha Kadaba, 2007
- Dr. Celeste Bolin, started January 11th, 2010
- Dr. Jim Moselhy, started November 10th, 2010

Research Associates:
- Dollie LaJoie, B.S., started August 23rd, 2010
- Dr. Randall Ryan, started October 25th, 2010

Mentor for High School Students:
- Chris Anderson Treasure Valley Math and Science Center
- Charles Bin Boise High School

Mentor for Undergraduate Students:
• Barbara Smith
• Erick Schlekeway Attended Medical School
• Matt Tommack
• Brooke McCuskey
• Anna Hemphill
• Kencee Amyx Attended Medical School
• Brian Byrne Attended Medical School
• Andrew Oler Attended Ph.D. Program
• Lee Rooney Accepted into Medical School
• Tshering Sherpa Attended Ph.D. Program
• Jenny Stear Attended Medical School
• Tyrell Simpkins Attended D.O./Ph.D. Program
• Deidre Barrera
• Amanda Bruesch Attended M.S. Program at Boise State University
• Christine MacDougal Attended Ph.D. Program, Attended Law School
• Loni Connell (from University of Georgia)
• Dan Henbest Attended Medical School
• Kelly Katula Attended Medical School (D.O. Program)
• Jonathan Lee (from BYU-Idaho)
• Jeff Redshaw Attended Medical School
• Mary Lewis (from BYU-Idaho)
• Bengt Phung Attended Ph.D. Program (from College of Idaho)
• Ryan Fox
• Stephen-David Spelter
• Logan Miller (from BYU-Idaho)
• Kara Jackson
• Caleb Sutherland Attended Ph.D. Program
• Dollie Thompson
• Farhad Mangal
• Krista DeCoursey (from BYU-Idaho)
• Maygen Cardova
• Rachael Anderson (from BYU-Idaho)
• Maryam Sabetian

Mentor for Medical Students:
• Jeff Walker University of Washington
• Joe Deaver University of Washington
• Camille Asher University of Washington

Presentations: (Poster and Oral Presentations since 2003)

Protein Characterization Illuminates the Effects of Oncostatin M in Breast Cancer: 2 Dimensional Polyacrylamide Gel Electrophoresis of MB-MDA231 Cells. Pernilla Stridh-Igo; Kencee Amyx; Cheryl Jorcyk; Julie Oxford; and Sheryl Hawkes. 1st Annual Boise State University Undergraduate Research Day, Boise State University, Boise, ID, April 19th, 2004. Local.

The Role of Oncostatin M in Human Microvascular Endothelial Cell Proliferation. Lee Rooney, Adrian Pauw, Alex Ide and Cheryl L. Jorcyk. 1st Annual Boise State University Undergraduate Research Day, Boise State University, Boise, ID, April 19th, 2004. Local.

Neutrophils Co-Cultured with Breast Cancer Cells Express Endogenous Oncostatin M (OSM). (Oral Presentation) Marisa Queen, Alexander Ide, Kencee Amyx, Barbara Smith,

The Role of Oncostatin M in Prostate Cancer. David H. Chang and Cheryl L. Jorcyk. 2nd Annual INBRE Conference, Northwest Nazarene University, Nampa, ID, August 7th-10th, 2005. Regional.

GM-CSF from Breast Cancer Cells Triggers Expression of Oncostatin M (OSM) by Neutrophils During Co-culture. Soma Ganguly, Marisa M. Queen, and Cheryl L. Jorcyk. 2nd Annual INBRE Conference, Northwest Nazarene University, Nampa, ID, August 7th-10th, 2005. Regional.

Signaling of OSM-induced VEGF in human breast and prostate cancer cell lines. Andrew J. Oler, Alexander E. Ide, David Chang, Cheryl L. Jorcyk. 2nd Annual INBRE Conference, Northwest Nazarene University, Nampa, ID, August 7th-10th, 2005. Regional.

Oncostatin M-Receptor evaluation in normal, carcinoma, and metastatic human tissue. Stear Jenny, Byrne Brian, Queen Marisa, Jorcyk Cheryl. 2nd Annual INBRE Conference, Northwest Nazarene University, Nampa, ID, August 7th-10th, 2005. Regional.

Colon cancer: a role for oncostatin M in tumor cell progression? Tyrell Simkins and Cheryl Jorcyk. 3rd Annual Boise State University Undergraduate Research Day, Boise State University, Boise, ID, April 17th 2006. Local.

Using siRNA to modify the expression of OSM in mammary cancer cells in vitro. Jeff Redshaw, Patrick Aranda, Kelly Katula, and Cheryl L. Jorcyk. 5th Annual Boise State University Undergraduate Research Conference, Boise State University, Boise, ID, April 14th, 2008. Local.

Human breast cancer cell metastatic potential is reduced by the combination of OSM and a HIF1a inhibitor. Ryan K. Fox, Amanda Bruesch, Cheryl L. Jorcyk. 5th Annual Boise State University Undergraduate Research Conference, Boise State University, Boise, ID, April 14th, 2008. Local.

Using shRNA to reduce the expression of mouse OSM in mouse mammary cancer cells in vitro. Jeff Redshaw, Patrick Aranda, Kelly Katula, and Cheryl Jorcyk. 5th Annual INBRE Conference, August 4-6, 2008, Boise, ID. State.

Cancer Switches: developing an inducible plasmid to control oncostatin M expression in human and murine breast cancer cell lines. Jeffrey C. Walker and Cheryl L. Jorcyk. 5th Annual INBRE Conference, August 4-6, 2008, Boise, ID. State.

Tomato fluorescent expression in breast cancer metastasis. Kara Jackson and Cheryl L. Jorcyk. 5th Annual INBRE Conference, August 4-6, 2008, Boise, ID. State.

The effects of knockdown expression of HIF1α and VEGF: angiogenesis in breast cancer. Logan J. Miller, Patrick Aranda, Jeff Walker, and Cheryl L. Jorcyk. 5th Annual INBRE Conference, August 4-6, 2008, Boise, ID. State.

Oncostatin M receptor knockdown in mammary carcinoma cells: the role of OSM signaling in tumor progression and metastasis. Patrick S. Aranda, Ken Tawara, and Cheryl L. Jorcyk. 5th Annual INBRE Conference, August 4-6, 2008, Boise, ID. State.

Developing 4T1.2 and 4T1-luc2 cells that overexpress full-length and truncated oncostatin M inducibly and constitutively. Dollie LaJoie, Hunter Covert, Jeff Walker, Cheryl L. Jorcyk. 7th Annual INBRE Conference, August 2-4, 2010, University of Idaho, Moscow, ID. State.

Establishing human breast cancer cells that inducibly express oncostatin M. Hunter Covert, Dollie LaJoie, Joe Deaver, and Cheryl L. Jorcyk. 7th Annual INBRE Conference, August 2-4, 2010, University of Idaho, Moscow, ID. State.

Hypoxia inducible factor 1 alpha plays a role in mammary cancer cell-mediated bone destruction. (Oral Presentation) Ken Tawara and Cheryl L. Jorcyk. 7th Annual INBRE Conference, August 2-4, 2010, University of Idaho, Moscow, ID. State.

Professional Service:

Manuscript Reviewer, numerous journals including Cancer Research, Molecular Cancer Research, the International Journal of Cancer, BMC Cancer, the International Journal of Biochemistry and Cell Biology, the American Journal of Pathology, Cytokine, Experimental Cell Research, and the Archives of Biochemistry and Biophysics.

Member, VA Research and Development Biosafety Committee. Department of Veterans Affairs Medical Center, Boise, ID, 1999-2006.

Participant, St. Luke’s Regional Medical Center’s Mountain States Tumor Institute (MSTI) oncology seminar/dinner presentations, 2003-present.

Northwest Regional Officer, Sigma Xi Honorary Science Society, 2005-2006.

Lobbyist, National Cancer Institute, NIH. Lobbied for cancer funding to Idaho Senators and Congressmen on Capital Hill, Washington DC, 2006.

Member, MentorNet. Designed to provide mentors to young researcher around the country, 2006.

Lobbyist, American Cancer Society. Lobbied for cancer funding to Idaho state legislators, Boise, ID, 2009.

University Research-related Service:

Member, Graduate Studies Oversight Committee (GSOC). The Department of Biology, Boise State University, 2000-2006.

Host for Seminar Speakers, Department of Biological Sciences Seminar Series, Boise State University, 2003-present.

Member, IACUC (Institutional Animal Care and Use Committee). Boise State University, 2005-2006.

Member, Biomolecular Sciences Ph.D. Planning Committee. (Chair, Molecular & Cellular Biology Section). Boise State University, 2005-2006.

Member, Premedical Student Summer Fellowship Grant Review Committee. The Department of Biology, Boise State University, 2006.

Member, IACUC (Institutional Animal Care and Use Committee). Boise State University, 2007-2008.

Member, IRB (Internal Review Board). Biomedical Human Subjects, Boise State University, 2008-2010.

Co-Chair, Internal Review Board (IRB) Committee. Boise State University, 2010-present.
Byung I. Kim, Ph. D
Associate Professor of Physics, Boise State University, Boise, ID 83725
phone : 208-426-3659 fax : 208-426-4330 e-mail : byungkim@boisestate.edu

(i) **Professional Preparation**
Korea Advanced Institute of Science and Technology Physics BS, 1991
Seoul National University Physics MS, 1993
Seoul National University Physics Ph. D, 1998
University of Houston Chemical Physics 1998-2001
Sandia National Laboratories Biophysics 2001-2004

(ii) **Appointments**
2009 Aug.– Present : Associate Professor
2004 July– 2009 July : Assistant Professor, Boise State University
1998 Nov.– 2001 Oct: Research Associate I, University of Houston

(iii) **Research Areas of Interest**
Confinement induced water phase transitions, Chiral recognitions, Long Term structural change of plasmid DNA, Molecular self-assembly, Biomolecular stabilization constant measurement, Development of bioactive surfaces, Cantilever based optical interfacial force microscopy (COIFM), Magnetic force microscopy (MFM) using electrostatic force modulation, Electrochemical scanning tunneling microscopy (EC-STM), Nanotribology using friction force microscopy (FFM), AFM-FET hybrid biosensor, SPM based nanolithography.

(iv) **Research Experiences**
Dr. Kim’s research is focused on molecular scale investigation of bio-molecular systems such as proteins, DNAs, cells, and bacteria using various scanning probe techniques including COIFM, STM, AFM, and MFM. The COIFM, which stands for “cantilever based optical interfacial force microscope,” is a special scanning probe microscope recently developed by Dr. Kim for biophysics research at Boise State University. Kim’s group currently uses the COIFM for investigating phase transition of interfacial water, which is important in understanding biomolecular systems such as antifreeze proteins. The instrument is also used to probe the metastable states of molecular interactions between two biomolecules. This research is funded from National Science Foundation. Another current research project that Dr. Kim is conducting is the investigation of organic molecular recognitions in electrochemical environments by scanning tunneling microscopy (STM). The competitive roles of intermolecular and adsorbate-substrate interactions in molecular ordering is a subject currently being studied using STM. Another project is the study of an enzyme system, 5-methyl thioadenosine/s-adenosylhomocysteine nucleosidase (MTAN) extracted from Escherichia coli, by measuring a biomolecular stabilization constant using a novel atomic force microscope (AFM) technique. Kim’s group is also studying the relationship between topography and magnetic structures by a recently developed magnetic force microscope that employs a novel electrostatic force modulation.

(v) **Publications (Peer Reviewed)**
1. B. I. Kim, J. Rice, H. Joo, and J. Holmes, “Measuring a Stabilization Constant between Two Bio-
Molecules using Atomic Force Microscopy,” submitted to Biophysical J. for publication on
4/22/2011 (under review).

2. B. I. Kim, “Direct Observation of Polymer-like Water Structure by Cantilever-Based Optical
revision).

3. B. I. Kim, J. A. Rasmussen and E. J. Kim, “Large Oscillatory Forces Generated by Interfacial Water
under Shear Modulation between Two Hydrophilic Surfaces,” submitted Appl. Phys. Lett. for
publication on 2/17/2011 (under revision).

4. B. I. Kim, Reilly Clark, and Tyler Clark, “Long-Term Structural Changes of Plasmid DNA Studied

5. B. I. Kim, J. R. Bonander, and J. A. Rasmussen, “Simultaneous measurement of normal and friction
forces using a cantilever-based optical interfacial force microscope,” Rev. Sci. Instrumn. 82, 053711
(2011).

6. B. I. Kim, “Nanotribology and nanoindentation using advanced scanning probe techniques,”

Lett. 92, 103124 (2008)

S. Santos and J. S. Moodera, “Carrier-controlled ferromagnetism in transparent oxide

10. B. I. Kim, “Chiral Recognition of PVBA on Pd(111) and Ag(111) Surfaces”, Langmuir 22, 9272-
9280 (2006)

11. B. I. Kim, “Direct Comparison Between Phase Locked Oscillator And Direct Resonance Oscillator In
5035(2004)

Gust, “Observations of Photo-Switching in Tethered Spiropyrans Using the Interfacial Force

5220 28 (2003).

16. L. C. Fernandez-Torres, B.-I. Kim, S. S. Perry, The frictional response of VC(100) surfaces:

(vi) **Patent Pending and Invention Disclosure**

- Inventor: Byung Kim, Invention Title:“ Invention of a simultaneous measurement technique of normal and friction forces using a cantilever-based optical interfacial force microscope,” Boise State University Invention Disclosure Form (submitted on May 13, 2011).

- Inventor: Byung Kim, Invention Title:“ High-Speed Atomic Force Microscope (HS AFM) Using an Angular Laser-Beam Detection (ALBD) Scheme for Simultaneous Optical Imaging with Improved Resolution,” Boise State University Invention Disclosure Form (submitted on August 10, 2009).

(vii) **Memberships and Professional Services**

Member of Biophysical Society
Member of American Vacuum Society
Guest Editor of Journal *Scanning* (2009-present)
Textbook Review Service (four book manuscripts in Biophysics and Analog Electronics)
Proposal Reviewer of NSF, Research Corporation, and others
Member of the Institutional Biosafety Committee (IBC) of Boise State University (2004 – 2007)
Reviewer of the Faculty Research Grants (2005-2006)
Tenure/Promotion Committee of Physics Department (2010- Present)
Member of the Honor & Awards Committee of College of Arts and Sciences (2005-2006, 2009-2010)
Member of the Mini Development Committee of College of Arts and Sciences (2005-2006)
Member of the Bio/Nanophysics Faculty Search Committee of Physics Department (2005-2006)

(viii) **Research Supports (~$450,000)**

3. **COTTRELL COLLEGE SCIENCE AWARDS**: “Scanning Probe Microscopy of Interfacial Water Confined between Silica Surfaces”; Agency: Research Corporation; Amount: **$45,683**; Time Periods: 05/11/07 - 05/12/09; **PI: Byung Kim**.

4. **INBRE Summer 2006 INBRE UG Fellowship Prospective Mentor**: “Summer Undergraduate Fellowship Mentor“; Agency: Idaho BRIN/INBRE Program; Amount: **$6,000** ($5,000 for UG Salary); Time Periods: 10 weeks (summer 2005); **PI: B. Kim**

5. **NSF EPSCoR Startup Augmentation funding**: “Development of Interfacial Force Microscope for Water Study”; Agency: University of Idaho; Time Periods: 1 year (June 1, 2005 to May 31, 2006); Amount: **$10,000**; Pls: Byung Kim (**PI**) and Russell, Dale

7. **Collaborative Grant Improvement Initiative (CGII)**; Achieving excellence in research and scholarship “Biophysical and Biochemical Characterization of Protein Structure and Molecular Interactions in Cell Signaling”, Agency: Boise State University; Amount: **$150,000** for 2 year. Time periods : 2 years (June 2005 to May 2007); Pls: J. Oxford (**PI**), H. Charlier, N. Hazeki-Taylor, B. Kim, B. Knowlton, J. Peloquin, A. Punnoose, and S. Smith (**co-PIs**)

8. **Faculty Research Initiation Grants (FRIG)**; “High-Speed AFM For Biomolecular Studies,”; Agency: Boise State University –ORA; Time Periods: 1 year (July 2005-June 2006), Amount:**$15,000**; Pls: Byung Kim (**PI**)
9. **Faculty Research Grants (FRG)**; “Single molecular studies of chiral recognition on fcc(111) surfaces,”; Agency: Boise State University –ORA; Time Periods: 1 year (July 2005 - June 2006), Amount:$5,000; PIs: Byung Kim (PI)

(ix) **Presentations** (since joining BSU; * marks undergraduate research assistants)

4. Joey Hanson* and Byung Kim, “Chiral Recognition of 4, 4’ Biphenyl-dicarboxylic acid on Pd(111) and Au(111) Studied by Electrochemical-Scanning Tunneling Microscopy,” 7th Annual Undergraduate Research & Scholarship Conference 2010, April 12, 2010, Student Union Building, Boise State University.

17. J. O. Holmes*, B. I. Kim, P. Deschatelets, N. Minskoff and D. L. Russell, “An AFM-PMOS FET Biosensor for Proteomic Screening,” Undergraduate Research and Scholarship Conference, April 16th, 2007, Jordan Ballroom of the Student Union Building, Boise State University. Joe Holmes was awarded an outstanding research achievement award at Boise State University in 2007 (Attached a letter from Associate Dean Helen Lojek to Joe Holmes)

22. J. L. Rice* and B. I. Kim, “Probing the single molecular unbinding force between MTAN and HIA using atomic force microscopy”, 5th Annual INBRE Research Conference, August 6-8, 2006, Coeur d'Alene, ID.

23. B.I. Kim, "Humidity Dependent Ordering of Water and its Effect on Adhesion and Friction between Silica Surfaces" Gordon Research Conference on TRIBOLOGY, 06/18/2006 - 06/23/2006, Colby College, Waterville, ME. The PI's participation at this conference was due to the invitation of Vice-Chair Dr. Wahl. They supported the PI’s travel expense partially with GRC chair funds in the amount of $660.

(x) List of Supervised Students and Their Professional Experience

Undergraduate Students

1. Soomin Kim (Pharmacy at U. of Michigan, May 2011 –present), PVBA Trimer Study
2. Reilly Clark (Biology, September 2010 –present), Observation of Plasmid DNA structures by AFM.
4. Edward Kim (Physics, July 2007 – February 2011), Biological COIFM
10. Rob Schreiber (Physics, May 2009 – August 2009), Instrumentation of EC-STM, COIFM and Highspeed AFM using lab-view program
11. Luke Smith (Biology Graduate, December 2007 – August 2009), Bio-AFM.
12. Joey Hanson (Pre-Med, Junior, January 2009 – August 2009), Chiral recognition of BPBA on fcc(111)
24. Alina Schmipf (chemistry major & physics minor, 10/12/05 – 01/19/06) BioAFM.

High School Intern Students (during summer 2009)
1. Kevin Brown (Capital High School (Boise, ID) and Treasure Valley Science and Math Center) (March 2011 – present), Analysis of Water Data
2. Lauren Reeder (Boise High School and Treasure Valley Science and Math Center, Junior), (November 2010 –Present), EC-STM of organic molecules on metal surfaces.
3. Hyonjee Joo (Boise High School and Treasure Valley Science and Math Center, Junior), (July 2010 –Present), Bio-AFM.
4. Reilly Clark (Rocky Mountain High School (Meridian, ID), Senior) (May 2009 –August 2010), Observation of Plasmid DNA structures by AFM.
5. Tyler Clark (Rocky Mountain High School (Meridian, ID), Junior) (May 2009 –August 2009), Observation of Plasmid DNA structures by AFM.
6. Alex Harmon (Capital High School (Boise, ID) and Treasure Valley Science and Math Center, Junior), (May 2009 –November 2009), SPM circuit analysis, and force-distance curve analysis using freely jointed chain model.
7. Christina Lee (Boise High School, Senior), (May 2009 –August 2009), EC-STM of organic molecules on metal surfaces.
Jeunghoon Lee, Ph. D.

Department of Chemistry and Biochemistry
Boise State University
1910 University Drive
Boise, ID 83725-1520

jeunghoonlee@boisestate.edu
(208) 426-3473 (work)
(208) 968-0775 (home)
(630) 373-4059 (cell)

EDUCATIONAL AND PROFESSIONAL BACKGROUND

Boise State University, Boise, ID
- Assistant Professor, Aug. 2008 – present

Northwestern University, Evanston, IL
 - Fabrication and functionalization of multi-metal nanopyramids for biological imaging and targeted therapeutics
 - Orientation and refractive index dependent optical properties of metal nanopyramids

University of Connecticut, Storrs, CT
- Graduate research with Prof. Fotios Papadimitrakopouls, Jan. 1999 – Aug. 2005
- Ph. D. in Polymer Science, Sep. 2005
 Thesis title: “Ligand Assisted Assemblies of CdSe Quantum Dots for Microelectronics and Biological Applications”
 - CdSe quantum dot labeling of plasmid DNA for gene tracking
 - Layer-by-layer assembly of CdSe quantum dots for light-emitting diode applications
 - Structure – fluorescence relationship of water-soluble polymer/CdSe QD clusters

Seoul National University, Seoul, Korea
- Graduate research with Prof. Jyongsik Jang, Jan. 1994 – Feb 1996
- M. S. Chemical Technology, Feb. 1996
 - Synthesis and adhesion testing of polyimides with flexible linkers
 - FT-IR analysis of polyimides/aluminum interface

Seoul National University, Seoul, Korea
- B. S. Chemical Technology, Feb. 1994 (cum laude, GPA 3.74/4.3)
TEACHING EXPERIENCE

Boise State University

- Spring 2011 CHEM 301 “Survey of Organic Chemistry”
 CHEM 310 “Organic Chemistry Laboratory II”
- Fall 2010 CHEM 509/CHEM 422 “Introduction to Polymer Chemistry”
 CHEM 308 “Organic Chemistry Laboratory I”
- Spring 2010 CHEM 309 “Organic Chemistry II”
 CHEM 310 “Organic Chemistry Laboratory II”
- Fall 2009 CHEM 307 “Organic Chemistry I”
 CHEM 308 “Organic Chemistry Laboratory I”
- Spring 2009 CHEM 309 “Organic Chemistry II”
 CHEM 310 “Organic Chemistry Laboratory II”
- Fall 2008 CHEM 307 “Organic Chemistry I”

University of Connecticut

- Spring 2005 Teaching Assistant, CHEM 195 “Science of Chemistry”, introductory chemistry course for non-science major undergraduates
- Spring 2004 Guest Lecturer, CHEM 195 “Science of Chemistry”, introductory chemistry course for non-science major undergraduates
- Spring 2004 Undergraduate Research Supervision
- Spring 2003 Teaching Assistant, CHEM 394 “Conductive Polymers and Devices” graduate course
- Spring 2001 Teaching Assistant and Guest Lecturer, CHEM 384 “Polymer Characterization” graduate course

Seoul National University

- Spring 1995 Teaching Assistant, “Organic Chemistry I” undergraduate course, conducted review sessions

RESEARCH GRANTS

- “DNA Polymerization-Assisted Colorimetric Detection of Nucleic Acids using Gold
Nanoparticles,” Mountain States Tumor and Medical Research Institute, PI, $7,500, 7/1/2010 – 6/30/2011
- “IDR: Self-Assembling Nanophotonic and Nanoelectronic Devices on DNA Nanobreadboards,” National Science Foundation, co-PI, $774,999, 8/15/2010 – 8/14/2013

OTHER EXPERIENCES
- Society of Plastics Engineers (SPE) UConn student chapter (Sep. 2000 – Sep. 2001), Secretary
- Military Service (Apr. 1996 – Oct. 1997), Public Service Agent, Seongnam, Korea
- Cheil Industries (Jul. 1992 – Aug. 1992), Summer internship

AWARDS AND AFFILIATIONS
- University of Connecticut doctoral dissertation fellowship, 2005
- Polymer program poster competition, University of Connecticut, 1st place, May 2002
- University of Connecticut graduate travel grant, 2002
- Polymer program summer research fellowship, University of Connecticut, 2001
- Korean Institute of Chemical Engineers scholarship, 1992-1993
- American Chemical Society Member
- Materials Research Society Member

PUBLICATIONS (Journal Articles)

Letters (2003), 83(9), 569-574.

PUBLICATIONS (book chapters and proceedings)

SELECTED PRESENTATIONS

2. “Anisotropy in Plasmonic Particles and Nanoparticle Assembly”; University of Idaho Chemistry Seminar, Moscow, ID, November 2010 (talk).

5. “Dual mode imaging and selective functionalization of multi-material nanopyramids”; ACS Fall Meeting, Boston, MA, August 2007 (talk).

Curriculum Vitae
Owen Michael McDougal, Ph.D.
http://chemistry.boisestate.edu/people/owenmcdougal/index.html

Department of Chemistry and Biochemistry
Boise State University
1910 University Drive, Boise, ID 83725
(208)-426-3964

EDUCATION

1992 B.S. Chemistry/Spanish minor, State University of New York College (SUNY) at Oswego, NY. GPA: 3.59/4.00.

PROFESSIONAL POSITIONS

Leadership Experience

2009-2011 Faculty Senate President, Boise State University, Boise, ID

Position Roles and Responsibilities: As Senate President, attended and presented at Idaho State Board of Education meetings, met regularly with the BSU President, Provost and VP for Academic Affairs, VP for Finance and Administration, VP for General Counsel, presented at dean’s council, networked regularly with Senate Chairs from University of Idaho, Idaho State University, and Lewis and Clark State College, met with Presidents of Professional and Classified Staff, orchestrated two Senate meetings monthly for two years, assembled agendas and meeting materials, finalized minutes, worked with committee chairs, served as the point of contact and liaison between faculty and the administration and State Board of Education, conducted an all-day Senate retreat to make progress on a faculty constitution, new core curriculum, prioritized projects for the year, and disseminated Senate actions to the faculty at the end of each semester.

Achievements as Senate President: 1) Curriculum changes: lowered the minimum credits required for graduation from 128 to 120, approved a new core curriculum with an emphasis on learning objectives and assessment of outcomes, exploration of a new academic calendar to improve financial model for instruction, evaluation of new approaches to implement technology in teaching and learning; 2) Governance: rewrote the faculty constitution to include academic freedom and responsibility, presidential succession, new position definitions, clarification of voting rights, and inclusion of a voting representative on the Senate by lecturers, research, and clinical faculty, held an open faculty forum, faculty wide vote, worked with the Office of the President to clarify wording in the faculty approved constitution, and coordinated the effort to
develop an institutional financial challenge policy and lobbied to modify Idaho State Board of Education policy wording to allow universities to manage their own finances; 3) **Faculty Compensation:** served as an advocate to enhance faculty compensation, established the Faculty Incentive Pay Program with the VP for Research, facilitated the Tuition Dependent Assistance Program and access to the Children’s Center for faculty and staff with the VP for Finance and Administration & the AVP for Human Resources, worked with the AVP for Human Resources to explore the viability of forming a health care consortium for higher education employees, worked with the Provost and VP of Academic Affairs to explore faculty salary increases, which led to a recommendation by the Financial Affairs committee for a model to internally fund increases independent of the state; and 4) **Service and Training:** nominated to participate in the inaugural Presidential Leadership Academy, selected to serve on administrative search committees for the AVP Human Resources, AVP Instructional Technology, and the Provost and VP Academic Affairs, and participated in administrative meetings including the executive budget, dean’s council, strategic planning, naming of buildings, and selection of honorary doctorate candidates.

Academic Positions

- **2009-Present** Associate Professor of Chemistry, Boise State University, Boise, ID.
- **2006-2009** Assistant Professor of Chemistry, Boise State University, Boise, ID.
- **2003-2006** Associate Professor of Chemistry, Southern Oregon University, Ashland, OR.
- **1998-2003** Assistant Professor of Chemistry, Southern Oregon University, Ashland, OR.

Graduate and Undergraduate Assistantships

- **09/92-5/93** Teaching Assistant, instructor of Survey of Chemistry and Organic laboratory, University of Utah, Salt Lake City, UT.
- **08/91-5/92** Research Fellow in Organic Chemistry, State University of New York at Oswego, Oswego, NY.
- **06/91-8/91** Research Experiences for Undergraduates, University of Utah, Salt Lake City, UT.

Professional Positions

- **05/05–8/05** Visiting Professor, instructor of Organic and Bioorganic Chemistry, University of Utah, Salt Lake City, UT.
- **09/04-5/05** Visiting Associate Professor of Chemistry, sabbatical appointment, University of Utah, Salt Lake City, UT.
- **08-9/02; 8-9/03; 6-9/04; 8–9/05** Visiting Professor, instructor of Organic Chemistry (4 years) and Green Organic Chemistry Laboratories (summer 2004 only), University of Oregon, Eugene, OR.
06/01-8/01 Visiting Professor, instructor of Bioorganic Chemistry, University of Utah, Salt Lake City, UT.

06/90-8/90 Laboratory Technician, Galson Laboratories, East Syracuse, NY.

GRANTS ($2,625,676 in Funding; $773,874 as PI)

11/10 QinetiQ North America Year I, “31P ssNMR Analysis of Treated Fabrics” ($50,000) Contract.

2/10 Boise Technology Inc. Year IV, “NMR Characterization of Chemical Composition in a Mixed Phase System” ($45,904) Collaborative Contract.

2/10 BSU, Designing for Learning Success, “Expanding Organic Chemistry at BSU” ($20,000) PI.

1/10 USAMRAA Defense Threat Reduction Agency contract number W81XWH-07-1-0004, “The DNA Safeguard Project” (Grant: $1,069,525; McDougal portion: $103,200) Co-PI.

9/09 NSF MRI Grant No. 0923535: “Acquisition of a LC-MS at Boise State University” ($676,964) Co-PI.

7/09 Idaho State Board of Education Technology Incentive Grant Program, “Modernizing Freshman Laboratories Using State-of-the-Art Instrumentation” ($55,700) PI.

7/09 MSTMRI grant number 6PR3382000170, “Design, Synthesis, and Biological Testing of Novel and Selective Antagonists of nAChRs.” ($7,500) PI.

4/09 NIH Grant #P20 RR016454 from the INBRE Program of the National Center for Research Resources (Grant: $16,000,000; McDougal portion: $100,000 est.) Co-PI.

7/08 USAMRAA Defense Threat Reduction Agency contract number W81XWH-07-1-0004, “The DNA Safeguard Project” (Grant: $1,069,525; McDougal portion: $116,728) Co-PI.

5/08 Pacific Northwest National Laboratory-Environmental Molecular Sciences Laboratory (PNNL-EMSL), “Metabolomics and Proteomics of Bacterial Signaling” (est. $15,000) PI.

2/08 Boise Technology Inc. Year II, “NMR Characterization of Chemical Composition in a Mixed Phase System” ($26,500) Collaborative Contract.

1/08 MSTMRI, “In Search of a Cure for Parkinson’s: A Structure Activity Relationship Study” ($5,000) PI.

1/08 Idaho State Board of Education Technology Incentive Grant Program, “Going Green: Environmental, Economic, Efficient Organic Chemistry Lab Curriculum” ($99,700) PI.

11/07 Merck/AAAS Undergraduate Research Program ($60,000) Co-PI.

11/07 Research Corporation grant number 6PR3381000172, “The Design, Synthesis, and Biological Testing of Novel and Selective Antagonists of Neuronal Nicotinic Acetylcholine Receptors” ($56,000) PI.
11/07 College of Arts and Science Travel Award, “NMR at the Interface,” poster presentation, Experimental Nuclear Magnetic Resonance Conference, Asilomar, CA ($400) PI.

10/07 College of Arts and Sciences Civic Engagement Grant Program, “Establishing Community Engagement in the Chemistry Curriculum” ($15,000) PI.

7/07 Boise Technology Inc., Year I, “NMR Characterization of Chemical Composition in a Mixed Phase System” ($24,000) Collaborative Contract.

2/07 MSTMRI, “Electrostatic Topography Mapping of Novel and Selective Antagonists of Neuronal Nicotinic Acetylcholine Receptors” ($5,000) PI.

6/06 NSF CRIF-MU/RUI Grant Number 0639251: “Acquisition of a 500-MHz Nuclear Magnetic Resonance Spectrometer at Boise State University” ($500,000) Co-PI.

6/06 Office of Research Administration (BSU): “Travel Award, Scientific or Scholarly Activities” ($500).

5/05 Professional Development Grant (SOU): “Keeping Current with Modern Technology in Organic Spectroscopy” ($6,017) PI.

5/03 NSF Workshop: “NMR Fundamentals and Applications,” Washington State University ($2,500) PI.

5/03 Professional Development Grant (SOU): “Incorporating a New 400 MHz NMR Spectrometer into the Chemistry Curriculum” ($3,880) PI.

5/03 SOU Technology Resource Grant: “A New Printer for Chemistry” ($1,300) PI.

3/03 Murdock Charitable Trust: “Organic Spectroscopy Laboratory and Biotechnology Evolution at Southern Oregon University.” ($213,000) Co-PI.

5/02 Professional Development Grant (SOU): “Development of a spectroscopic database to be used by undergraduate students to improve their understanding of NMR, IR, and MS.” ($1,713) PI.

4/02 Carpenter II Travel Grant: Applied toward travel to the 43rd ENC, Asilomar, CA ($350) PI.

8/01 NSF MRI Grant Number 0116245: "Acquisition of a 400 MHz NMR Spectrometer to Broaden Research Experiences for Undergraduates at Southern Oregon University” ($293,310) PI.

2/01 Agilent Technologies University Relations Grant: “A New GC-MS for Chemistry.” ($76,910) Co-PI.

5/99 Carpenter II Travel Grant: JEOL ECLIPSE NMR System Management course, Peabody, MA ($350) PI.

4/99 Professional Development Grant (SOU): “Development of an advanced NMR instrumentation course for undergraduates” ($2,350) PI.
3/99 General Education Course Development Grant (SOU): Development of general scientific coursework and laboratory experiments for non-science majors ($4,000) PI.

11/98 Scientific Research Grant (SOU): Black tail deer tarsal gland research lab preparation. ($1,200) PI.

3/98 Student Travel Award to the 39th Annual ENC, Asilomar, CA ($700) PI.

PUBLICATIONS

Peer Reviewed (*corresponding author, † research student co-author)

Books

Book Chapter

Manuscripts under Review

PRESENTATIONS (past 3 years)

National Conference Presentations

8/10 Owen McDougal and Reed Jacob, poster, Automatic DockOmatic: Ligand and receptor screening made easy. The 240th National ACS Meeting, Boston, MA.

5/09 Bryan Martin, Michael Hill, Owen McDougal, poster, What does NMR have to do with the Mixing of Oil and Water? Council on Undergraduate Research Posters on the Hill, Washington DC, VA.

4/09 Owen M. McDougal, invited oral, What does NMR have to do with Undergraduate Research? Experimental Nuclear Magnetic Resonance Conference 50th Annual Meeting, Asilomar, CA.
3/09 Owen M. McDougal, poster, *Structural Basis for α-Conotoxin Potency and Selectivity*, Experimental Nuclear Magnetic Resonance Conference 50th Annual Meeting, Asilomar, CA.

Regional Conference Presentations

8/10 Julia Oxford, Cheryl Jorcyk and Owen McDougal, invited oral, *Extracellular Matrix Modulates Cell Signaling*. The 8th Annual INBRE Conference, Moscow, ID.

8/10 Chris Mallory, Owen McDougal and Julia Oxford, poster, *Computational Studies of Collagen XI α1 Domain*. The 8th Annual INBRE Conference, Moscow, ID.

8/10 Mark M. Swartz, Seth Eidemiller, Ken Cornell and Owen McDougal, poster, *Metabolic Analysis of MTN Deficiency in E. coli*. The 8th Annual INBRE Conference, Moscow, ID.

8/10 Nick Weires, Andrew Narver and Owen McDougal, poster, *NMR Investigation of Conotoxin pK_a*. The 8th Annual INBRE Conference, Moscow, ID.

6/10 Owen M. McDougal and Reed B. Jacob, invited oral, *DockoMatic: Automating Autodock for Ligand to Receptor Binding Prediction*. The 91st Annual AAASPD Conference, Ashland, OR.

6/10 Emily Drussel, Bryan Martin, David Luker, Michael Hill, Gerry Chingas, Owen McDougal, poster, *Using NMR Techniques in a Model Biphasic System to Find Partition Coefficients*. The 91st Annual AAASPD Conference, Ashland, OR.

8/09 Chris Mallory, Emily Drussel, Owen M. McDougal, poster, α-Conotoxin E11A Binding Activity Towards Nicotinic Acetylcholine Receptor. The 8th Annual INBRE Research Conference, Pocatello, ID.

8/09 Luke Woodbury, Owen M. McDougal, and Julia Oxford, poster, Chondroitin Sulfate Glycosaminoglycan Binding Sites within Collagen Type XI. The 8th Annual INBRE Research Conference, Pocatello, ID.

8/09 Andrew Narver and Owen M. McDougal, poster, pKₐ Determination in Alpha-Conotoxin MII and Analog. The 8th Annual INBRE Research Conference, Pocatello, ID.

8/09 David Luker and Owen M. McDougal, poster, Taking a Slice out of NMR – A New Method. The 8th Annual INBRE Research Conference, Pocatello, ID.

8/09 Aubrey Johnston and Owen M. McDougal, poster, Peptide Synthesis, Cleavage and Purification. The 8th Annual INBRE Research Conference, Pocatello, ID.

8/09 Seth Eidemiller, Ken Cornell, Owen McDougans, poster, Manipulation of E. coli: A Metabolomics Study. The 8th Annual INBRE Research Conference, Pocatello, ID.

4/09 Owen M. McDougal, invited oral, Where does all the Time Go? Idaho INBRE Research Symposium, Boise State University, Boise, ID.

2/09 Owen M. McDougal, invited oral, Idaho INBRE Research Opportunity for Undergraduates: Peptides for Parkinson’s, Brigham Young University-Idaho, Rexburg, ID.

6/08 Owen McDougal, invited oral, From Snail Venom to Therapeutics: How Conotoxins Provide Insight into Drug Design, AAASPD 89th Annual Meeting Waimea, HI.

6/08 Matthew Turner, Logan Zemp, Owen McDougal, poster, Three Dimensional Solution Structure for α-Conotoxin MII [E11A]: Structure-Function Studies in the Development of Therapeutic Approaches for Parkinson’s Disease, AAASPD 89th Annual Meeting, Waimea, HI.

3/08 Owen McDougal, invited oral, Energy and Poverty in Idaho, Idaho Academy of Sciences 50th Annual Meeting, College of Western Idaho, Nampa, ID.

3/08 Owen McDougal, invited oral, Deadly Snails, NMR, and the Treasure Valley, Idaho Academy of Sciences 50th Annual Meeting, CWI, Nampa, ID.

3/08 Seth Eidemiller and Owen McDougal, invited oral, Biomass Fuel Briquettes: Composition, Compaction and Combustion, Idaho Academy of Sciences 50th Annual Meeting, CWI, Nampa, ID.

8/07 Andrew Ormond and Owen McDougal, poster, *Developing Therapeutic Approaches for Parkinson’s Treatment: Analysis of α-CTx MII Analogs*. The 6th INBRE Conference, Moscow, ID.

6/07 Blake Stanhouse, Dana Moracco, Paige Fetzer, Ben Parker, and Owen McDougal, poster presentation, *The Three C’s of Renewable Biomass Briquettes*. The 88th Annual AAASPD Conference, Boise, ID.

Local Conference Presentations

4/10 Luke Woodbury, Kendra Coonse, Owen McDougal, Julia Oxord, poster, *Determination of Sulfated Glicosaminoglycan Binding Sites within Collagen Type XI Using Surface Plasmon Resonance and Nuclear Magnetic Resonance Spectroscopy*. Undergraduate Research Conference (URC), Boise State University, Boise, ID.

4/10 Emily Drussel, Bryan Martin, Michael Hill, Gerry Chingas, Owen McDougal, poster, *Using NMR Techniques to Find Partition Coefficients Across Biphasic Systems*. URC, BSU, Boise, ID.

4/10 Scotia Gonzales and Owen McDougal, poster, *Pentapeptide Synthesis, Cleavage, and Purification*. URC, Boise State University, Boise, ID.

4/10 Chris Mallory and Owen McDougal, poster, *Bioinformatics, Homology Modeling, and Parkinson’s Disease*. URC, Boise State University, Boise, ID.

4/10 Andrew Narver and Owen McDougal, poster, *pK_a Determination of Alpha Conotoxin MII and Analogs*. URC, Boise State University, Boise, ID.

4/09 Aubrey Johnston and Owen McDougal, poster, *Going Green at Boise State University*. URC, Boise State University, Boise, ID.

4/09 Reed Jacob, Matt Walters, Ken Cornell, and Owen McDougal, poster, *Resistance is Not Futile: Computational Directed Design of Combatant Pentapeptides*. URC, Boise State University, Boise, ID.

4/09 Mark Swartz and Owen McDougal, poster, *Affordable Alternative Energy at the Community Level*. URC, Boise State University, Boise, ID.

Awards and Honors

08/10–12/10 Presidential Leadership Academy, Boise State University, Boise, ID.

08/09 Certificate of completion, AMIX Metabolomics NMR Software training course, Bruker Biospin Inc., Peabody, MA.

05/09 Undergraduate Student Research Achievement Award, Council on Undergraduate Research, Posters on the Hill, Washington, DC.

05/08 Recipient Scientific User Access, Pacific Northwest National Laboratory-Environmental Molecular Sciences Laboratory, Richland, WA.

04/08 Undergraduate Student Research Achievement Award, Council on Undergraduate Research, Posters on the Hill, Washington, DC.

11/07 College of Arts and Sciences Travel Award, 48th Experimental Nuclear Magnetic Resonance Conference, Asilomar, CA.

03/07 Certificate of completion, Center for Teaching and Learning, Service Learning Course Development six-week training workshop.

06/06 Recipient Travel Award, Office of Sponsored Projects, Boise State University, Boise, ID.

04/06 Certificate of appreciation for ten years of service, National Ski Patrol.

05/03 National Science Foundation Workshop Award, “NMR Fundamentals and Applications,” Washington State University, Pullman, WA.

04/02 Recipient of Carpenter II Travel Award, 43rd Experimental Nuclear Magnetic Resonance Conference, Asilomar, CA.

02/01 Feature/Cover Article, “A Unique Approach to Conservation,” Journal of Chemical Innovation.

05/99 Recipient of Carpenter II Travel Award, JEOL ECLIPSE NMR System Management Course, Peabody, MA.

03/99 Recipient of General Education Course Development Grant, Southern Oregon University, Ashland, OR.

03/98 Recipient of Student Travel Award, 39th Experimental Nuclear Magnetic Resonance Conference, Asilomar, CA.

Professional Service

National
01/09-12/09 Local Section Activities Committee, American Chemical Society

05/07-09/09 Councilor, Representative for Snake River Local Section of the American Chemical Society.

03/09-12/09 Chemistry Exam Writer, United States Academic Decathlon (USAD), 450 MC questions for high achieving high school students; http://www.usad.org/.

Regional

06/12 Meeting Chair, collocated American Chemical Society Northwest Regional Meeting and American Association for the Advancement of Science Pacific Division annual meeting, Boise, ID.

12/09-Present President Elect, Snake River Local Section American Chemical Society.

06/07 Program Organizer for the 88th Annual American Association for the Advancement of Science Pacific Division (AAASPD) Meeting, Boise Center on the Grove, Boise, ID.

03/06-06/06 Chair Elect, Sigma Xi, Southern Oregon Chapter, SOU, Ashland, OR.

09/01–Present AAASPD Executive Committee (2005-Present); Chemistry Section Chair and Councilor (2001-Present), Site Selection Committee (2006-Present).

Professional Association Memberships

American Association for the Advancement of Science, Lifetime Member

Idaho Academy of Sciences, Lifetime Member

American Chemical Society

Sigma Xi, Scientific Research Society

Institutional Service

University Level Committees:

11/10-Present Provost and Vice President of Academic Affairs, University Search Committee, faculty representative.

10/10-Present Technology in Teaching and Learning Committee, faculty representative.

09/10-Present Alternative Academic Calendar Committee, faculty representative.
07/10-11/10 Associate Vice President for Human Resources, University Search Committee, faculty representative.

03/10-Present Academic Grievance Board, faculty representative.

09/09-Present University Naming Committee; Faculty Senate/All Faculty Representative.

01/07–5/11 Faculty Senate, College of Arts and Sciences Representative; Senate President from 9/09 to the 5/11.

08/09–09/10 Graduate Council, Math and Science Representative.

11/09-06/10 Associate Vice President for Information Technology, University Search Committee, faculty representative.

08/09–09/10 Faculty Grievance Committee, Faculty Senate Liaison.

02/08–Present Honorary Doctorate Degree Selection Committee, Science Representative.

10/00–06/03 Professional Development Committee, Southern Oregon University. Committee Chair 9/02 – 6/03.

Department Level Committees:

02/09-Present Graduate Studies Committee

11/08–Present Student Awards/Scholarships Committee

10/08–05/09 Chair NMR Facility Manager Search Committee

11/09-04/10 Biochemist Search Committee

11/08-05/09 Biochemist Search Committee

11/07–08/08 Chair Biochemist Search Committee

09/06-05/07 Public Relations/Outreach Committee

09/99–05/04 Environmental Studies Committee, Chemistry Department Representative, SOU.
THESIS COMMITTEES

Emma Baker Chemistry MS \(^{31} \text{P SSNMR of Treated Fabrics} \\
Reed B. Jacob Interdisciplinary MS Bioinformatics \\
Amy Ulappa Biology MS Sage brush metabolomics \\
Brian Dies Biology MS Biofuel production \\
Jemima Monroe Materials Science, Engineering Materials characterization

COLLABORATORS

Julia Oxford, Boise State University, Boise, ID \\
Gerry Chingas, Boise State University, Boise, ID \\
Michael Hill, Boise Technology, Inc. Nampa, ID \\
Ben Parker, BHS Marketing, Inc. Nampa, ID \\
Phil Johnson, BHS Marketing, Inc. Nampa, ID \\
James Groome, Idaho State University, Pocatello, ID \\
J. Michael McIntosh, University of Utah, Salt Lake City, UT \\
Richard P. Steiner, University of Utah, Salt Lake City, UT

RESEARCH STUDENTS (2006-Present)

<table>
<thead>
<tr>
<th>Student</th>
<th>Degree Path</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emma Baker</td>
<td>Chemistry MS</td>
<td>(^{31} \text{P SSNMR of Treated Materials}</td>
</tr>
<tr>
<td>Reed B. Jacob</td>
<td>Interdisciplinary MS</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>Emily Drussel</td>
<td>Chemistry, BS</td>
<td>Biphasic slice imaging NMR</td>
</tr>
<tr>
<td>Bryan Martin</td>
<td>Chemistry/Biology BS</td>
<td>Biphasic slice imaging NMR</td>
</tr>
<tr>
<td>David Luker</td>
<td>Biology BS</td>
<td>Collagen XIa1 structure/function</td>
</tr>
<tr>
<td>Aubrey Johnston</td>
<td>Chemistry BS</td>
<td>Biphasic slice imaging NMR</td>
</tr>
<tr>
<td>Luke Woodbury</td>
<td>Chemistry/Biology BS</td>
<td>Biphasic slice imaging NMR</td>
</tr>
<tr>
<td>Scotia Gonzales</td>
<td>Chemistry BS</td>
<td>Peptide synthesis, purification, biological activity</td>
</tr>
<tr>
<td>Chris Mallory</td>
<td>Chemistry BS</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>Andrew Narver</td>
<td>Biology BS</td>
<td>Collagen XIa1 structure/function</td>
</tr>
<tr>
<td>Matthew Mirkin</td>
<td>Chemistry BS</td>
<td>Collagen XIa1 modeling</td>
</tr>
<tr>
<td>Seth Eidemiller</td>
<td>Pre-Med</td>
<td>Green Organic Chemistry Curriculum Development</td>
</tr>
<tr>
<td>Mark Swartz</td>
<td>Chemistry BS</td>
<td>Fuel briquettes, conotoxins, MTN metabolomics</td>
</tr>
<tr>
<td>Teslin Brasseure</td>
<td>Chemistry BS</td>
<td>Biphasic slice imaging NMR</td>
</tr>
<tr>
<td>Matthew Turner</td>
<td>Biology BS</td>
<td>Biphasic slice imaging NMR</td>
</tr>
<tr>
<td>Logan Zemp</td>
<td>Chemistry BS</td>
<td>Conotoxin structure/function</td>
</tr>
<tr>
<td>Andrew Ormond</td>
<td>Biology BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Taylor Dixon</td>
<td>Chemistry BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Dana Morocco</td>
<td>Biology BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Blake Stanhouse</td>
<td>Biology BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Paige Fetzer</td>
<td>Biology BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Nick Weires</td>
<td>Chemistry BS (UofI)</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Ryan Morton</td>
<td>Biology BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Ben Parker</td>
<td>Chemistry BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Josh Marshall</td>
<td>Biology BS</td>
<td>Conotoxin modeling</td>
</tr>
<tr>
<td>Julie Napier</td>
<td>Chemistry BS (BYU-I)</td>
<td>Conotoxin modeling</td>
</tr>
</tbody>
</table>

REFERENCES: Available upon request.
Kristen A. Mitchell, Ph.D.

Dept. of Biological Sciences, Boise State University
1910 University Drive
Boise, ID 83725-1515
(208) 426-4620 (ph)
(208) 426-1040 (fx)
kristenmitchell@boisestate.edu

EDUCATION

2003 **Ph.D. Pharmacology/Toxicology**, Dept. of Pharmaceutical Sciences, Washington State University, Pullman, WA (Mentor: B. Paige Lawrence, Ph.D.)

1995 **B.S. Microbiology**, Idaho State University, Pocatello, ID

PROFESSIONAL EXPERIENCE

2010-pres. Director, Undergraduate Studies, Dept. of Biological Sciences, Boise State University
2008-pres. Affiliate Member, Mountain States Tumor and Medical Research Institute, Boise, ID
2008-pres. Assistant Professor (tenure-track), Dept. of Biological Sciences, Boise State University
2005-2007 Adjunct Professor, Biology Dept, San Jacinto College, Houston, TX
2006-2007 Postdoctoral Fellow, Laboratory of Dr. Cornelis Elferink, Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
2004-2006 Postdoctoral Trainee, NIH National Research Service Award (NRSA), Laboratory of Dr. Cornelis Elferink, Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
2003-2004 Postdoctoral Trainee, National Institutes of Environmental Health Sciences (NIEHS), Laboratory of Dr. Cornelis Elferink, Dept. of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX
1996-2003 Graduate Research/Teaching Assistant, Dept. of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA
1995-1996 Associate Research Scientist, Plasma Manufacturing Technology Division, Bayer Corporation, Clayton, NC

HONORS AND AWARDS

2011 Outstanding New Investigator Award, Idaho Academy of Science
2009 Top Ten Scholars Honored Professor, Boise State University
2008 Junior Faculty Travel Fellowship, The Toxicology Forum
2007 Best Postdoctoral Publication Award, Society of Toxicology
2004 NRSA Individual Postdoctoral Fellowship (NIH/NIEHS)
2003 Award for Outstanding Woman in Graduate Studies, Honorable Mention, WSU
2000 Teaching Assistant Excellence Award, Washington State University
2000 “Senator of the Year,” Graduate and Professional Student Association, WSU
2000 Predoctoral Fellowship, PhRMA Foundation
1998 Predoctoral Fellowship, American Foundation for Pharmaceutical Education
1994 NSF Summer Research Fellowship, University of Wisconsin-Madison
PROFESSIONAL ACTIVITIES

National Committees and Service
2010-pres. Chair, Cell and Molecular Biology Section, American Association for the Advancement of Science Pacific Division
2008-pres. Manuscript Reviewer (ad hoc), Toxicology; Chem Biol Interact
2009-2011 Councilor, Pacific Northwest Chapter of the Society of Toxicology (PANWAT)
2008-2010 Member, Membership Committee, Immunotoxicology Specialty Section, Society of Toxicology
2008-2010 Member, Awards Committee, Immunotoxicology Specialty Section, Society of Toxicology
2009 Symposium Organizer & Chair, Recent Advances in Pharmacology and Toxicology, 90th Annual Meeting of the American Association for the Advancement of Science Pacific Division, San Francisco, CA.
2008 External Grant Reviewer (ad hoc), University of Washington Institute of Translational Health Sciences Small Grant Program
2008 Symposium Organizer & Chair, Putting your best foot forward: Job Interviewing Workshop for Early Career Scientists, 47th Annual Meeting of the Society of Toxicology, Seattle, WA
2007-2008 Chair, Postdoctoral Assembly Board, Society of Toxicology
2007 Invited Panelist, National Leadership Workshop on Mentoring Women in Biomedical Sciences, NIH Working Group on Women in Biomedical Careers, Bethesda, MD
2006-2007 Councilor, Postdoctoral Assembly Board, Society of Toxicology
2005 Host, Undergraduate Education Program, Society of Toxicology
2004 Member, International Postdoc Committee, National Postdoctoral Association
2004 Facilitator, Annual Meeting of the National Postdoctoral Association
2003 Member, Program Committee, Gulf Coast Chapter of the Society of Toxicology
2001-2003 Student Representative, Pacific Northwest Association of Toxicologists (PANWAT), Society of Toxicology

University Committees and Service
Boise State University, Boise, ID
2010-2011 Chair, Science Competition Day Planning Committee
2010-pres. Director, Undergraduate Studies, Dept. of Biological Sciences
2008-pres. Member, Undergraduate Research Conference Planning Committee
2008-pres. Member, Institutional Animal Care and Use Committee (IACUC)
2008-pres. Member, Science Competition Day Planning Committee

Committee Chair (Thesis Advisor) for these Graduate Students in the Dept. of Biological Sciences:
2010-pres. Stephanie Wyler, M.S. candidate (degree expected 05/2012)
2010-pres. Wendy Harvey, M.S. candidate (degree expected 08/2012)
2009-pres. Ashley McCartney, M.S. candidate (degree expected 05/2012)
2009-pres. Cheri Lamb, M.S. candidate (degree expected 08/2012)
2008-pres. Christopher Horras, M.S. candidate (degree expected 08/2011)
2009-2010 Emily Schmid, M.A. (degree awarded 12/2010)

Committee Member for these Graduate Students
2010-pres. John Reeck, M.S. candidate, Dept. Biological Sciences
2010-pres. Kellie Pease, M.S. candidate, Dept. Biological Sciences
2009-pres. Reed Jacob, M.A. candidate, Dept. Chemistry and Biochemistry
2009-pres. Lavanya Vempati, M.S. candidate, Dept. Biological Sciences
2008-pres. Ming Fang, M.S. Dept. Biological Sciences (degree awarded 05/2010)

Other Committees and Service
2009-pres. Member, Institutional Animal Care and Use Committee (IACUC), Brown Mackie College, Boise, ID
2008-pres. Member, Institutional Animal Care and Use Committee (IACUC), Boise VA Medical Center, Boise, ID

PUBLICATIONS
Peer-reviewed research articles:
Horras CJ, Lamb CL, King A, Hanley J, Mitchell KA. Suppression of liver regeneration by TCDD does not require natural killer cells. (submitted to Journal of Immunotoxicology)
RESEARCH GRANTS RECEIVED

Current:
Role of monocyte chemoattractant protein (MCP)-1 in liver regeneration
NIH R15DK088749
Role: PI
2010-2013

Immunoregulation of liver regeneration by the aryl hydrocarbon receptor
NIH Idea Network of Biomedical Research Excellence (INBRE), P20RR016454
Role: Magnet PI
2009-2012

Investigating mechanisms of alcohol-induced liver fibrosis
M.J. Murdock Charitable Trust, Partners in Science Program
Role: PI
2010-2012

Mechanisms of cellular mechanoreception in bone
NASA
Role: Co-PI
2010-2013

Completed:
Role of monocyte chemoattractant protein (MCP)-1 during priming phase of liver regeneration
Institute of Translational Health Sciences (ITHS), UL1RR025014
Role: PI
2010-2011

Role of innate immunity in Ah receptor-mediated suppression of liver regeneration
Mountain States Tumor and Medical Research Institute (MSTMRI), Small Project Grant
Role: PI
2008-2009

Role of Cytochrome P4501A1 in Cell Cycle Progression
NIH, National Research Service Award, F32ES013588
Role: PI
2004-2006

Immunotoxic Effects of TCDD on Antigen-Specific T Cell Responses
Predoctoral Fellowship, Pharmaceutical Researchers and Manufacturers of America (PhRMA)
2000-2002

Mechanism of TCDD suppression of T cell-dependent immune responses during infection with human influenza A virus
Predoctoral Fellowship, American Foundation for Pharmaceutical Education (AFPE)
1998-2001

INVITED PRESENTATIONS

2009 *In Vivo Regulation of Hepatocyte Proliferation By the Aryl Hydrocarbon Receptor.* 90th Annual Meeting of the American Association for the Advancement of Science Pacific Division, San Francisco, CA.

2008 *In Vivo Regulation of Hepatocyte Proliferation By the Aryl Hydrocarbon Receptor.* 89th Annual Meeting of the American Association for the Advancement of Science Pacific Division, Waimea, Hawaii.

2008 *In Vivo Regulation of Hepatocyte Proliferation By the Aryl Hydrocarbon Receptor.* 50th Anniversary Meeting of the Idaho Academy of Science, Nampa, ID.

2006 *Role of Aryl Hydrocarbon Receptor Activity During Liver Regeneration.* NIEHS Center in Environmental Toxicology, Environmental Health Sciences Seminar Series, University of Texas Medical Branch, Galveston, TX.

2006 *Sustained AhR Activity Attenuates Liver Regeneration.* NIEHS Center in Environmental Toxicology, Biotransformation Research Core, University of Texas Medical Branch, Galveston, TX.

TEACHING EXPERIENCE

Boise State University (2008-present)

- BIOL 497/597 Toxicology (3 credits)
- BIOL 205 Introductory Microbiology (4 credits)
- ZOOL 401/501 Human Physiology (4 credits)
- BIOL 497/595 Readings and Conference: TCDD Immunotoxicity (1 cr)
- BIOL 497/595 Readings and Conference: Molecular Pharmacology of the Ah Receptor (1 cr)
- BIOL 598 Perspectives in Toxicology (1 cr)

San Jacinto College (2005-2007)

- BIOL 2401 Human Anatomy and Physiology I (4 credits)
- BIOL 2402 Human Anatomy and Physiology II (4 credits)

University of Texas Medical Branch (2003-2007)

- BBSC 6104 Critical Reading of the Scientific Literature; course director (1 credit)
- PHTO 6118 Introduction to Research; guest lecturer

Texas A&M University at Galveston (2004)

- MARB 414 Toxicology; course co-director and lecturer (3 credits)
TRAINEES

Graduate Students

- **03/10-pres.** Stephanie Wyler, M.S. candidate, Dept. Biological Sciences, Boise State University
- **01/10-pres.** Wendy Harvey, M.S. candidate, Dept. Biological Sciences, Boise State University
- **08/09-pres.** Cheri Lamb, M.S. candidate, Dept. Biological Sciences, Boise State University
- **02/09-pres.** Ashley McCartney, M.S. candidate, Dept. Biological Sciences, Boise State University
- **08/08-pres.** Christopher Horras, M.S. candidate, Dept. Biological Sciences, Boise State University
- **08/09-08/10** Emily Schmid, M.A. completed, Dept. Biological Sciences, Boise State University

Undergraduate Students (enrolled in BIOL 496 credit for independent study in my laboratory)

- **01/11-pres.** Jalisa Robinson, Dept. Biological Sciences, Boise State University
- **01/11-pres.** Brian Ellsworth, Dept. Biological Sciences, Boise State University
- **01/11-pres.** Perry Hamilton, Dept. Biological Sciences, Boise State University
- **01/11-pres.** Krista Baker, Dept. Biological Sciences, Boise State University
- **08/10-12/10** Ashley Machado, Dept. Biological Sciences, Boise State University
- **08/10-pres.** Megan Sandmann, Dept. Biological Sciences, Boise State University
- **01/11-pres.** Carolyn Klocke, Dept. Biological Sciences, Boise State University
- **08/10-pres.** Ricky Aguayo, College of Health Sciences, Boise State University
- **08/10-05/11** Coley Doolittle, Dept. Biological Sciences, Boise State University
- **08/10-05/11** Alexandra King, Dept. Biological Sciences, Boise State University
- **08/10-05/11** Amie Moore, Dept. Biological Sciences, Boise State University
- **05/10-08/10** Byron Ward, Dept. Biological Sciences, Boise State University
- **01/10-05/10** LynnAnn Hoppert, Dept. Biological Sciences, Boise State University
- **01/10-05/11** Kristofer Lark, Dept. Biological Sciences, Boise State University
- **01/10-05/11** Evan Schlager, Dept. Biological Sciences, Boise State University
- **08/09-12/09** Erik Ponce, Dept. Biological Sciences, Boise State University
- **08/09-05/11** Lauren Troy, Dept. Biological Sciences, Boise State University
- **08/09-pres.** Eva Amouzougan, Dept. Biological Sciences, Boise State University
- **01/09-05/10** Billy Galligar, College of Health Sciences, Boise State University
- **01/09-05/09** Nicholas Bock, Dept. Biological Sciences, Boise State University
- **08/08-05/10** Shawna D’Ingillo, Dept. Biological Sciences, Boise State University
- **08/08-08/09** Cheri Lamb, College of Health Sciences, Boise State University
- **08/08-12/08** Matthew Dudley, Northwest Nazarene University, Nampa, ID

Other Trainees

Summer 2011

- Dr. Kristine Ablin-Stone, Biology Teacher at Borah High School, *MJ Murdock Partners in Science Program*
- Jamie Minick, Undergraduate Student, Boise State University, *INBRE Summer Research Fellow*
- Caleb Huang, High School Student, Meridian Medical Arts Charter High School, *INBRE Excellence in Biomedical Research Intern*

Summer 2010

- Steven Clements, Medical Student at University of Washington, *Medical Student Research Training Program (MSRTP)*
• Dr. Kristine Ablin-Stone, Biology Teacher at Borah High School, *MJ Murdock Partners in Science Program*
• Eva Amouzougan, Undergraduate Student, Boise State University, *INBRE Summer Research Fellow*
• Kyler Lewis, High School Student, Meridian Medical Arts Charter High School, *INBRE Excellence in Biomedical Research Intern*

Summer 2009
• Dietric Hennings, Medical Student at University of Washington, *Medical Student Research Training Program (MSRTP)*
• Cheri Lamb, Undergraduate Student, Boise State University, *INBRE Summer Research Fellow*
• Jason Hanley, post-baccalaureate student at Boise State University, *MSTMRI Research Fellowship (year-long)*

SCIENTIFIC AND PROFESSIONAL SOCIETIES

American Association for the Advancement of Science (2005-present)
American Physiology Society (2010-present)
ASPET (2005-present)
Sigma Xi (2008-present)
Society of Toxicology (1999-present); Full member (2009-present)
Curriculum Vitae: June 2011

Julia Thom Oxford

Distinguished Professor Biological Sciences
Co-Director, Musculoskeletal Research Institute
Director, Biomolecular Research Center
Boise State University
Boise, Idaho 83725
(208) 426-2395
joxford@boisestate.edu

Degrees:

Doctor of Philosophy, Biochemistry and Biophysics 1986
Washington State University, Pullman, WA
Dissertation: "Export of Protein in Escherichia coli"
Advisor: Prof. Linda L. Randall
Department of Biochemistry and Biophysics
Washington State University

Master of Sciences, Biochemistry and Biophysics 1985
Washington State University, Pullman, WA

Bachelor of Arts, Chemistry and Biology (cum Laude) 1981
Linfield College, McMinnville, OR

Positions Held:

Professor, Department of Biological Sciences, Boise State University, 2008-present
Affiliate Faculty, University of Washington, School of Medicine, Department of Biochemistry, 2003-present
Affiliate Faculty, University of Idaho, Dept of Microbiology, Molecular Biology and Biochemistry, 2002-present
Associate Professor, Department of Biology, Boise State University, 2003-2008
Assistant Professor of Biology, Boise State University, 2000-2003.
Affiliate Faculty, Oregon Health Sciences University, School of Dentistry, 2000-2002.
Research Assistant Professor, Integrative Biosciences Department (formerly Oral Molecular Biology), School of Dentistry, Boise State University, 2000-2003.
Graduate Research Assistant, Department of Macromolecular Structure and Function, School of Medicine, Oregon Health Sciences University, 1996-1998.
Senior Research Associate, Shriners Hospital for Crippled Children , Portland, 1992-1996.
Postdoctoral fellow, Shriners Hospital for Crippled Children and Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, 1995-1998.
Graduate Teaching Assistant, Department of Chemistry, Oregon Health Sciences University, 1995-1998.

Honors and Awards:

Graduate Student Travel Award, Washington State University, 1984.
Phi Lambda Upsilon, Washington State University, 1986.
Arthritis Investigator Award, Arthritis Foundation, 1996.
Gerlinger Research Foundation Award, 1999.
Oregon Medical Research Foundation Award, 2000.
Boise State University Foundation Scholar Award, Research and Creative Activity, 2006.
Lori and Duane Steucke Dean’s Distinguished Faculty Award, 2005-2009
MMACHS Distinguished Lecture Series February 10, 2011
Boise State University Distinguished Professor 2011
Teaching

Undergraduate Courses:

Boise State University
- Biology/Materials Science/Mechanical & Biomedical Engineering 477 Biomaterials Science
- Biology 497 Biochemistry of Cell Signaling
- Biology 497 Introduction to Bioinformatics
- Biology 191 General Biology
- Biology 493 Internship in Laboratory Research
- Biology 451 Developmental Biology, lecture and laboratory
- Biology 443 Advances Developmental Biology
- Biology 301 Cell Biology
- Biology 202 General Zoology lecture and laboratory
- Chem 405 Research in Chemistry

Portland State University (adjunct professor)

Lewis and Clark College, Portland, Oregon (adjunct professor)

Graduate Courses:

Boise State University
- Biology/Materials Science/Mechanical & Biomedical Engineering 577 Biomaterials Science
- Biology 598 Biomaterials Graduate Seminar
- Biology 597 Biochemistry of Cell Signaling
- Biology 597 Introduction to Bioinformatics
- Biology 465/565 Advanced Topics in Molecular Biology Techniques
- Biology 466/566 Advanced Topics in Cancer and Developmental Biology
- Biology 567 Extracellular Matrix
- Biology 596 Directed Research, Boise State University
- Biology 551 Developmental Biology, lecture and laboratory
- Biology 543 Advances Developmental Biology
- Biology 650 Scientific Writing for publication

Oregon Health Sciences University

Colorado State University (visiting professor)
- PS 796, Grant writing course, Department of Physiology, 1996.
- VS 630, Molecular biology applications in Orthopaedic research, Veterinary Teaching Hospital, 1996.

Other: Item Writer for Medical College Admission Test, American College Testing Program, 1989-present.
Directed research, independent study and internships

Undergraduate Student Research Projects:

Kelci Burgess, 2010-present
Oncostatin M in Osteoarthritis

Neda Shefa, 2009 – present
Chondrocyte model systems for regenerative medicine
Abdominal aortic aneurysms
Posters on the Hill Presentation, 2011

Stephanie Frahs, 2009-present
Mechanotransduction in bone cells; biomaterials
Recipient of the NASA Microgravity University Award, 2011
Sigma Xi Grant in Aid of Research Award, 2011

Dawn Mikelonis, 2009-present
Zebrafish as model system for eye development
Recipient of the NASA Microgravity University Award

Jonathan Reeck, 2009-2010
Molecular biology analysis of Col11a1DVR transgenic mouse
Recipient of Sigma Xi Grant in Aid of Research, 2011

Benjamin Davis, 2006-2011, LC-Mass spectrometry, Proteomics
Recipient of INBRE Summer Undergraduate Research Fellowship, 2009
Recipient of the NASA Microgravity University Award, 2011

Luke Woodbury, 2006-2011, Histological characterization of the Col11a1deltaVR mouse model for osteoarthritis; Protein: carbohydrate interactions, protein purification, monomer-dimer equilibrium analysis by AUC, SEC-MALS
AAAS Pacific Division poster presentation, 2007
INBRE Biomedical Research Fellow, 2009

INBRE Summer Undergraduate Research Fellowship 2008, 2009

Tamara Kelly, 2007-2008
INBRE Summer Research Fellow, 2006
Undergraduate Research Symposium Presentation, 2007
Award recipient of the MSMRI research fellowship, 2007-2008
Began Medical School 2008

Amber Pedracini, 2007, Micro-CT analysis of bone density in mouse model of chondrodysplasia
Award recipient of Pre-med student research summer fellowship
Contributing author on peer-reviewed manuscript

Chelsea Sonius, 2007
INBRE Summer Research Fellow

Erik Linn, 2006-2007, Targeted deletion of Col11a1 variable region (VR); a model for osteoarthritis, Boise State University
Award recipient of the MSMRI research fellowship, 2006-2007
Undergraduate Research Symposium Presentation, 2007
Began Medical school, University of Utah, 2007

Kaci Bloxam, 2006-2007, Atomic Force Microscopy characterization of early intermediates in collagen fibrillogenesis, Contributing author on peer reviewed published manuscript

Jeremiah Maschmann, 2006-2007, Genomic analysis of the collagen gene family in zebrafish
Undergraduate Research Symposium Presentation, 2006
Graduated from Washington State University, 2011

Rohn McCune, 2004-2005, Protein purification and refolding, Boise State University
BRIN Summer Research Fellow, 2004
Recipient of First Place in BRIN Undergraduate Student Poster Competition
Award recipient of NASA Idaho Space Consortium Undergraduate Team Research Grant, 2005
Undergraduate Research Symposium Presentation, 2005
Began Medical School, University of Utah, 2006

Desiree Hansen, 2005, Analysis of the microenvironment of chondrosarcoma cells, Boise State University
Award recipient of NASA Idaho Space Consortium Undergraduate Team Research Grant, 2005
Undergraduate Research Symposium Presentation, 2005

Arzhang Fallahi, 2003-2004 Homology modeling of the amino propeptide domain of collagen XI alpha 1 chain, Boise State University and Albertson College of Idaho
Began Medical School University of Washington, 2004

Becky Kroll, 2002-2004, Surface plasmon resonance measurements of molecular interactions, Boise State University
Began Medical School, University of Utah, 2004

Joeli Adriany, 2003-2004, Post-translational modifications of collagen type XI in the vitreous of the eye, Boise State University
Top Ten Scholar, 2004, Boise State University

Katey Irwin, 2002-2005, Molecular modeling of the amino propeptide of collagen XI alpha 1 chain, Proteomics, Boise State University
BRIN Summer Research Fellow, 2002 and 2003
Poster presentation at NCUR Meeting, 2003, Salt Lake City
McNair Scholar, 2004-2005
Award recipient of NASA Idaho Space Consortium Undergraduate Team Research Grant, 2005
Began Graduate School, 2005

Top Ten Scholar, 2004
Began Graduate School, Karolinska Institute, Sweden, 2004

Holli Shultz, 2002-2003, Endochondral ossification; Recombinant expression of collagen XI isoforms, Boise State University
Poster presentation at NCUR Meeting, 2003, Salt Lake City
Pre-med Research Fellow, 2002, Boise State University

Theresa Jenkins, 2001-2002, Fetal Alcohol Syndrome, Boise State University

Jenifer Barry, 2001, Chondrocyte cell culture and protein expression, Boise State University.
Pre-Med Research Fellow, 2001
Top Ten Scholar, 2001, Boise State University
Began Medical School, University of Washington, 2002.

Began Dental School, 2002

Brian Spangler, 1999, Cartilage regeneration in culture and recapitulation of chondrocyte phenotype. Summer student, Oregon State University.

Kristen Jones, 1999, Optimization of culture conditions for bacterial expression of recombinant α1(XI) collagen amino terminal domain isoforms. Summer student, Concordia University.

Began Dental School, Oregon Health Sciences University, School of Dentistry, 2000.

Began Dental School, Oregon Health Sciences University, School of Dentistry, 2001

Graduate Student Research Projects:

Jonathon Reeck, 2010-present Zebrafish model system for osteogenesis
Recipient of Sigma Xi Grant-in-aid of research, 2011

Ming Fang, 2007-2010 Zebrafish Craniofacial Development
Recipient of ISU Molecular Core Facility Grant for DNA Sequencing
First author on Gene Expression Pattern 2010
Began doctoral program at Cincinnati Children’s Hospital, 2010.

Kendra Coonse, 2006-2010, Master of Science, Collagen-Biglycan interactions
Began Medical School 2010

Katey Anderson, 2005- present, Proteomic analysis of cartilage extracellular matrix
Kelly Willius, 2005-Bone regeneration in the zebrafish
Recipient of NASA-ISGC Graduate Student Fellowship, 2006-2007

Nathan Hoskins 2007-2009, Master of Science, Col11a1 regulates bone microarchitecture
Jason Adams, 2005-2008 Master of Science, Axial skeletal development in the zebrafish
Recipient of NASA-ISGC Graduate Student Fellowship, 2006-2007
Began doctoral program at Brigham Young University, 2008.

Prarthana Kashikar, 2004-2007, Master of Arts, Quantitative Real Time Polymerase Chain Reaction for the analysis of alternative splicing, Boise State University
Research Technician, Boise State University.

Recipient of Sigma Xi Grant-in-Aid of Research, 2004
Podium presentation at Materials Research Society Meeting, 2005
Contributing author on six papers.
Entered PhD program, University of Colorado, Boulder, CO

Ryan Medeck, 2000-2003, Master of Science, Morphogenetic messages in the extracellular matrix: The role of bone morphogenetic proteins (BMPs) and collagens.
Contributing author on three papers.
Employed by the Center for Disease Control.

Recipient of Sigma Xi Grant-In Aid of Research, 2001, 2002.
Recipient of MSMRI Grant-In-Aid of Research, 2003-04
Conributing author on six papers.
Physician’s Assistant program, Idaho State University.
Physician’s Assistant, Twin Falls, Idaho.

Grants for Educational Purpose:

Microarray analysis of gene expression for developmental studies, Course Development grant, 2002, Boise State University, $980.

Enhancement of Developmental Biology Laboratory Course, 2004, Boise State University, $650.

Merck/AAAS grant for undergraduate research at the interface of Chemistry and Biology, November 2, 2007, $60,000 funded for three years, Co-P.I.s; Cornell, Jorcyk, McDougal, Charlier, Tinker, Oxford.

Research

Refereed Publications:

Research Funding:

Current funding:

1. TITLE: Musculoskeletal Research Center
 DURATION: 07/01/07 to 06/30/11
 AGENCY (FUNDING SOURCE): Idaho State Board of Education, HERC
 ROLE ON PROJECT: Principal Investigator
 TOTAL AWARD: $1,000,000
 Objective: To provide a focal point for collaborative musculoskeletal research.
2. TITLE: Regulation of cell signaling by Col11a1 during craniofacial development in the zebrafish
DURATION: 09/01/09 to 08/31/12
AGENCY (FUNDING SOURCE): NIH (NICHD)
ROLE ON PROJECT: Principal Investigator
TOTAL AWARD: $211,500
Objective: to investigate the role of minor fibrillar collagens in craniofacial development using a zebrafish model system. To provide research opportunities for undergraduate students.

3. TITLE: Molecular Mechanisms of Cellular Mechanoreception in Bone
DURATION: 9/1/2010 – 8/30/13
AGENCY: NASA
ROLE ON PROJECT: Principal Investigator
TOTAL AWARD: $716,733
Objective: To investigate the mechanism of cellular response to changes in gravitational force. Information will inform the health concerns of individuals with osteoporosis as well.

4. TITLE: Idaho INBRE Program (PI: Carolyn Hovde Bohach)
DURATION: 7/15/04 to 6/31/14
FUNDING SOURCE: Funding Source: NIH (NCRR)
ROLE ON PROJECT: Co-PI
TOTAL AWARD: $16.2M ($2.6 M to Boise State University for INBRE 1, $4.1 M to Boise State University for INBRE 2, $443,751 for ARRA supplement)
Objective: To build a lasting change in biomedical research in Idaho in the form of new research opportunities and an increase in research infrastructure at Idaho Universities. To create and sustain jobs and accelerate the pace of research discovery.

5. TITLE: Acquisition of a Liquid Chromatography - Tandem Mass Spectrometer (LC/MS)(P.I.: Ken Cornell)
DURATION: Sept 2009 – August 2012
AGENCY: NSF
ROLE ON PROJECT: Co-PI
AMOUNT REQUESTED: $597,877
Objective: Instrument acquisition

6. TITLE: NSF Engineering Education Research to Practice (E2R2P) (Don Pumlee, Linda Huglin, Steve Villachica, P.I.)
DURATION: 10/01/2010 – 9/30/2013
AGENCY: NSF
ROLE ON PROJECT: Sounding board member,
AWARD AMOUNT: $150,000
Objective: To discover how to improve the process by which engineering education research is brought into practice.

Previous funding:

1. Topoisomerase II and the regulation of gene expression by higher-ordered chromatin structure; January 1987-December 1988, Postdoctoral fellowship, Funded by ISREC, Swiss Institute for Experimental Cancer Research, SF 45,000.
3. The role of type XI collagen in the functional integrity of normal and osteoarthritic cartilage; July 1996-June 1999, Principal Investigator, Funded by Arthritis Foundation, Biomedical Science Grant, $225,000.

9. Collagen Type XI in skeletal development and disease; February 1999, Principal Investigator, Funded by Gerlinger Foundation, $24,988.

11. Type XI collagen in extracellular matrix assembly; March 1, 2000 to February 28, 2001 Principal Investigator, MRF, OHSU, $25,000.

12. Biomedical Optics for Medical Research and Clinical Care; June 1, 2000 to May 31, 2005, NIH, Investigator (P.I. Steven Jacques) $3,115,625 total, of which $210,000 is designated for “Biomechanical and Optomechanical characterization of laboratory-generated cartilage” subproject-JTO).

13. NSF-EPSCOR "Acquisition of a peptide synthesizer" duration: 1 year, 2002, amount requested: $15,000.

14. NSF MRI/RUI "Acquisition of an EPR Spectrometer for Collaborative Research and Materials Science Education", $338,795 09/01/03 to 08/31/06.

15. Biomedical Research Infrastructure Network for Idaho, October 1, 2001 to June 30, 2004, NIH Co-Investigator (Michael Laskowski, PI), $6,000,000 total of which $1,383,947 was designated for BSU.

16. Supplement to Biomedical research infrastructure Network for Idaho, $2,000,000 total, of which $496,583 was designated for BSU.

19. NSF MRI/RUI "Acquisition of a Transmission Electron Microscope for Multidisciplinary Research and Education" 09/01/05 to 08/31/07, Co-PI, $691,910.

20. Collaborative Grant Improvement Initiative, 07/01/05 to 06/30/07, Boise State University, Principal Investigator, $150,000.

21. Investigating the role of collagen type XI in the structural integrity of cartilage tissue, 03/15/05 to 03/14/07, NASA Idaho Space Grant consortium, Principal Investigator, $30,000.

22. Type XI collagen isoforms in skeletal biology, February 1, 2001 to January 31, 2008, NIH RO1, Principal Investigator, $1,349,811.

23. Type XI collagen isoforms in skeletal biology-Independent Scientist Award, Career Development Grant, September 1, 2002 to August 31, 2007, NIH, Principal Investigator, $385,516.

24. NSF MRI/RUI: Acquisition of a Confocal Microscope for Multidisciplinary Research &Education, 09/01/06 to 08/31/10, NSF, Principal Investigator, $348,000.

25. MJMurdock Charitable Trust, Investigating mechanisms of alcohol-induced liver fibrosis using a zebrafish model system (P.I.: Kristen Mitchell), 5/17/10 to 12/31/11, Collaborator, $15,000

Invited Lectures and Presentations:

“Export of Protein in *Escherichia coli*.” Linfield College, McMinnville, OR, 1983.

“Export of Maltose-binding Protein in Escherichia coli.” University of Utrecht, Biochemistry Department, Utrecht, the Netherlands, 1985.
“Export of Protein in Escherichia coli.” University of Munich, Department of Physiology and Biochemistry, Munich, Germany, 1986.
“Intermediates in the Biosynthesis of Type XI Collagen.” Western Connective Tissue Society, Santa Cruz, CA, 1990.
“A Stably Transformed Line of Chondrocytes Synthesizes Type XI but not Type II Collagen.” Western Connective Tissue Society, Portland, OR, 1991.
“The Export of Protein in E. coli and into the Extracellular Matrix of Eukaryotic cells”, Department of Microbiology, Colorado State University, Fort Collins, CO, 1995.
“The role of Type XI Collagen in the functional integrity of Normal and Osteoarthritic Cartilage”, Equine Orthopaedic Research Program, Colorado State University, Fort Collins, CO, 1996.
“Type XI Collagen in the functional integrity of Normal and Osteoarthritic Cartilage”, Department of Orthopaedic Research, University of New Mexico School of Medicine, Albuquerque, NM 1997.
“Maintenance of Structural Integrity in Cartilage”, Department of Oral Molecular Biology, Oregon Health Sciences University, Portland, OR 1998.
"The role of extracellular matrix molecules in skeletal development" University of Idaho, Department of Microbiology, Molecular Biology and Biochemistry, Moscow, ID November, 2001.
"Extracellular matrix molecules in development and disease" Boise State University, Chemistry Department, January 2002.
"Role of extracellular matrix molecules in development and disease" Mountain States Medical Research Institute, Board of Directors, February 5, 2002.
“Extracellular matrix molecules in skeletal development” Idaho State University, Department of Pharmacology, Pocatello, ID 2002
“BMP-1 Mediated proteolytic processing of collagen type XI”; Medeck, Sosa and Oxford; Northwest Regional Developmental Biology Conference, March 2003
“Role of MeCP2 in neuronal differentiation and Rett Syndrome”; Cusack and Oxford; Northwest Regional Developmental Biology Conference, March 2003
"Type XI collagen in skeletal development" Brigham Young University, Provo, Utah, 2004.
“Collagen XI isoforms in skeletal biology” Boise State University, Department of Materials Science and Engineering, September 24, 2004.
“Collagen type XI and the structural integrity of cartilage” Materials Research Society, San Francisco, March, 2005
“Neuronal differentiation is blocked in the absence of MeCP2; rescued by caspase inhibitor” International Rett Syndrome Consortium, Victoria, British Columbia, August, 2005
“Collagen XI in bone trabeculae formation” NASA ISGC Moscow, Idaho, October 24, 2005
"Development of a model system for Rett syndrome", University of Idaho, Neuroscience Program, October 27, 2005
"Collagen XI isoforms in skeletal biology" University of Idaho, Department of Biological Sciences October 28, 2005

Contributed papers and posters at professional meetings:

Kristovich, SR and Oxford, JRT. "Effects of α1(XI) collagen isoforms on the structural and functional properties of the vitreous humor." 221st National Meeting of the American Chemical Society.

Luke Woodbury and Julia Oxford, Interactions between Collagen and Chondroitin Sulfate. Arthritis Symposium, St. Alphonsus Regional Medical Center, May 1, 2009

Ming Fang, Jason Adams, Lane McMahon, Julia Oxford, Craniofacial Skeletal Development: Zebrafish model system for human development, Arthritis Symposium, St. Alphonsus Regional Medical Center, May 1, 2009

Julie Oxford, Department of Biological Sciences, Biomarkers of joint development: Potential Biomarkers for Osteoarthritis? Boise State University, Arthritis Symposium, St. Alphonsus Regional Medical Center, May 1, 2009

Kristen Mitchell, Cheryl Jorcyk, Troy Rohn, Julie Oxford, Molecular Mechanisms of Cellular Mechanoreception in Bone Department of Biological Sciences, Boise State, Arthritis Symposium, St. Alphonsus Regional Medical Center, May 1, 2009

Jeff P. Gorski1, Nichole T. Huffman1, Oxford, J.T.2, Seidah, N.G.3, and Midura, R.J. PROCESSING OF BONE SIALOPROTEIN DURING BONE BIOMINERALIZATION. FASEB Summer Research Conference; Osteopontin Biology, Steamboat Springs, Colorado, August 2010

Neda Shefa, Julia Thom Oxford, Role of minor fibrillar collagens in the progression of arthritis Posters on the Hill, Council on Undergraduate Research poster Undergraduate Research Meeting 05-13-2011
Service

Professional service:
Membership in professional societies:
- American Society for Bone and Mineral Research
- Mountain States Tumor and Medical Research Institute, Affiliate Member
- Sigma Xi
- American Society for Matrix Biology

Grant Application Review: arc (Arthritis Research Council, UK)
- Burroughs Wellcome Trust
- NSF Merit Review of grant applications for Graduate Student fellowships and for Major Research Instrumentation

Manuscript Peer Review for the following journals:
- International Journal of Cell Biology
- Brain Research
- Journal of Histochemistry
- Journal of Neurochemistry
- BMC Developmental Biology
- Journal of Dentistry
- Journal of Biomedical Materials Research
- Gene Expression Patterns
- Acta Biochimica Biophysica
- Journal of Cell Biology
- Journal of Histochemistry and Cytochemistry

Institutional service:
- Faculty Advisor for Mu Delta student organization (March of Dimes) 2010-2011
- Boise State Research Scholars group 2008-2009 STEM Education
- Director, Biomolecular Research Center, 2004-present
- Co-director, Musculoskeletal Research Institute, 2007-present
- Department of Biological Sciences Graduate Student Oversight Committee member, 2007-present
- Department of Biological Sciences Tenure and Promotion Committee member, 2008-present
- INBRE Senior Research Advisory Committee member, 2004-present
- University Foundations Scholars Awards Committee Member, 2007-2008
- College of Arts and Sciences Honors and Awards Committee Member, Fall 2007
- Biology Department Research Committee member 2005-2007
- Advising Freshmen in Express Program, June 2005
- “NIH Funding” presented by Julie Oxford, Thursday, September 22, 2005
- Biotechnology Legislative Task Force presentation, Idaho State Capitol Building, September 7, 2005
- President of Boise State chapter of Sigma Xi, 2003-2005
- Pre-Dental School review Committee member, 2002
- Science Day, Boise State University, 2001

Community service:
- Adaptive skiing program, Shriners Hospital, 1990-1995
Career Mentor Program, Linfield College, 1993-2006
Expanding Your Horizons (Youth science career program), Yakima, WA, 1995
Advisory Board, BSU Children's Center, 2001-2002
Alumni Mentor Program, Washington State University, 1989-2006
Medical Advisory Board, BioLogic Aqua, Rogue Valley Natural Springs 1998-present
Discovery Center, 2004, 2005
Biology Outreach Workshop: DNA Fingerprinting; Mountain Cove High School, Boise, Idaho, 2005
Treasure Valley Arthritis Awareness Campaign member, 2006; Idaho Arthritis in Motion, 2006-2008
DNA isolation activity, Riverside Elementary, Oct 19, 2007
Treasure Valley Arthritis In Motion (I-AIM) Arthritis Symposium with St Alphonsus Regional Medical Center, April, 2009
Volunteer for local chapter of the National Arthritis Foundation, Wahooz Family Fun Center JA Family Day for families of children with juvenile rheumatoid arthritis, September, 2009
Volunteer for local chapter of the National Arthritis Foundation, Discovery Center JA Family Day for families of children with juvenile rheumatoid arthritis, October 2010
Treasure Valley Arthritis In Motion (I-AIM) Arthritis Symposium with St Alphonsus Regional Medical Center, June, 2010
ALEX PUNNOOSE
Distinguished Professor of Physics and
Associate Faculty of the proposed Interdisciplinary graduate programs in Materials Science and Engineering, and Biomolecular Sciences.
Boise State University, Boise, ID 83725-1570
Tel: (208) 426 2268 Fax: (208) 426 4330
E-mail: apunnoos@boisestate.edu

EDUCATION
1994 Ph. D. (Physics), Aligarh University, India
1990 M. S. (Solid State Physics), Aligarh University, India.
1988 B. S. (Physics), Mahatma Gandhi University, India.

EMPLOYMENT
04/2011 – Present: Distinguished Professor of Physics, Boise State University.
07/2008 – 03/2011: Professor of Physics, Boise State University.
07/2006 – 07/2008: Associate Professor of Physics, Boise State University.
06/2007 – 08/2007: Visiting Professor of Physics, Indian Institute of Science, Bangalore.
07/2002 – 07/2006: Assistant Professor of Physics, Boise State University.
10/1999 – 07/2002: Postdoctoral associate, West Virginia University (Nanoscale magnetism)
12/1997 – 10/1999: Research associate, Kuwait University (Zn-Cd-Te alloys & solar cells)

GRANTS, AWARDS AND HONORS
- 2010-11 award of Boise State University Distinguished Professorship; selected as one of the six Boise State University Distinguished Professors.
- 2007 award for outstanding research in the College of Arts and Science, Boise State University (a college-level award given every two years to the most outstanding researcher among 176 faculty members from 11 departments in the College of Arts and Sciences)
- 2007 award for outstanding teaching in the College of Arts and Science, Boise State University (a college-level award given every two years for the most outstanding performance in teaching, selected from 176 faculty members from 11 departments in the College of Arts and Sciences)
- 2006-2007 Boise State University Foundation award for outstanding research (a university-wide award given annually to the most outstanding researcher among 535 faculty members from 44 departments, and selected by a university-wide committee)
- Finalist, 2006-2007 Boise State University Foundation award for outstanding teaching (a university-wide award given annually for the most outstanding performance in teaching among 535 faculty members from 44 departments, and selected by a university-wide committee)
Receipient of the 2005 National Science Foundation-CAREER award (The National Science Foundation's most prestigious award in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research (http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503214))

Finalist of the 2010 Idaho Innovation Award in the Early-Stage innovation category organized by the Idaho Technology council in 2010 for the research work titled “Novel Nanoparticles That Kill Cancer Cells”

Honored as Coach for a Game by the Boise State University Athletic Department, 2007.

Selected as one of the two EPSCoR (Experimental Program to Stimulate Collaborative Research) researchers from Idaho to acknowledge at Capitol Hill, Washington, DC for research excellence during the National EPSCoR/IDeA States Membership Meeting, February 28 - March 1, 2006

PI or co-PI of 24 grants awarded during 2002-2010, totaling $8M (please see separate section pm Research Grants for details):

- 2009 Army Research Office – Applied Nanotechnology grant
- 2008 National Science Foundation – Collaborative research grant.
- 2008 National Science Foundation-Major Research Instrumentation (FACS) award.
- 2007 National Science Foundation - Major Research Instrumentation (XPS) award.
- 2007 Department of Energy-EPSCoR Implementation Grant.
- 2006 National Science Foundation-REU award.
- 2005 National Science Foundation-CAREER award.
- 2005 National Science Foundation-Europe Materials World Network award.
- 2005 National Science Foundation - Major Research Instrumentation (TEM) award.
- 2005 COAS Mini grant, Boise State University.
- 2005 Boise State University - Faculty Research Associates Program award.
- 2005 Boise State University - Collaborative Grant Improvement Initiative grant.
• 2005 National Science Foundation -Idaho-EPSCoR RII award.
• 2004 Petroleum Research Fund AC grant.
• 2004 Department of Energy-EPSCoR Implementation Grant.
• 2004 Micron Technology grant: Donation of Research Equipment.
• 2003 Cottrell College Science Award from Research Corporation.
• 2003 National Science Foundation - Major Research Instrumentation (EPR) Award.
• 2003 National Science Foundation -Idaho-EPSCoR Instrumentation (VSM) Award.
• 2003 Idaho EPSCoR-Collaborative Nano-research award 1.
• 2003 Idaho EPSCoR-Collaborative Nano-research award 2.
• 2002 National Science Foundation -EPSCoR Infrastructure Improvement Grant.

➢ Postgraduate merit scholarship from the Faculty of Science, Aligarh University (India) during 1988 – 1990.

➢ Top rank in M. S. in the solid state physics division at Aligarh University (India), 1990.

PROFESSIONAL ACTIVITIES

Scientific Sessions Chaired at International Conferences (After joining Boise State):

1. Invited to chair a Session on magnetic semiconductors at the 55th Annual Conference on Magnetism and Magnetic Materials, Atlanta, November 2010.

Selected Invited Talks (After joining Boise State):

3. *Oxide Semiconductor Nanostructures*
 Department of Physics, Indian Institute of Science, Bangalore, India on June 5, 2003

4. *Dilute Magnetic Semiconductor Nanoparticles*
 Chemistry Department, University of Idaho, April 26, 2007.

7. *Physics of Nanoscale oxides*; Department of Physics, Idaho State University, 2006.

9. *EPR Studies of Magnetic Nanoparticles*,

 Center for Materials for Advanced Technology (c-MAT), Trissur, India, December 3, 2004.

11. *Band Theory and Semiconductor Nanoparticles*,

13. *Finite Size Effects in CuO Nanoparticles*,

14. *Nanoscale Magnetism*
Indian Institute of Science, Bangalore, India on June 5, 2003

15. *Dilute Magnetic Semiconductors*

16. *Electron Magnetic Resonance in Magnetic Nanoparticles*
31st AMPERE Congress on Magnetic Resonance and Related Phenomena, at Adam Mickiewicz University, Poznan, Poland, July 14-19, 2002.

RESEARCH COLLABORATORS (Co-authors of Published Papers or Co-PIs of proposals)

University Level Collaborations

1. **Dr. W. B. Knowlton (Electrical Engineering and Materials Science and Engineering):**
Collaborates on the synthesis of thinfilm materials and their electrical properties and coauthor of a journal article published in Solar Energy Materials, co-presenter of several conference presentations, and co-PI of two NSF grants.

2. **Dr. P. Mullner (Materials Science and Engineering):**
Collaborates on the studies of magnetic shape memory alloys and coauthor of a journal article published in Journal of Applied Physics, co-presenter of numerous conference presentations, and co-PI of two NSF grants.

3. **Dr. B. Kim (Physics):**
Undertook magnetic force microscopy studies and coauthor of a journal article published in Nature Materials, co-presenter of numerous conference presentations, and co-PI of two NSF grants.

4. **Dr. K. Feris (Biology):**
Conducted antibacterial studies on nanoparticles and coauthor of several conference presentations, and co-PI of three major proposals to NIH, HERC and NSF.

5. **Dr. D. Wingett (Biology):**
6. **Dr. J. Tinker (Biology)**: Conducted antibacterial studies and coauthor of a journal article published in Langmuir and co-PI of a major proposals to HERC.

7. **Dr. D. Tenne (Physics)**: Carried out optical studies and coauthor of five journal articles published in Physical Review B, Advanced Functional Materials, and Journal of Applied Physics, co-presenter of several conference presentations, and co-PI of ongoing ARO and NSF grants, and two major proposals to NSF.

8. **Dr. J. Peloquin (Chemistry)**: Conducted Raman studies and coauthor of a journal articles published in Physical Review B, and co-PI of two major proposals to NSF.

9. **Dr. S. Shadle (Chemistry)**: Collaborated on ESR studies and co-PI of an NSF-MRI grant, and a major proposals to NSF.

10. **Dr. W. Kuang (Electrical Engineering)**: Working jointly on the synthesis and characterization of photonic materials, and co-PI of two major proposals to NSF.

11. **Dr. C. Hanna (Physics)**: Conducts computations studies and coauthor of seven journal articles published in Physical Review B, Advanced Functional Materials, Nanoscale Research Letters, Langmuir and Journal of Applied Physics, co-presenter of several conference presentations, and co-PI of an ongoing ARO grant, and a major proposals to HERC.

State and National level Collaborations

12. **Dr. R. Tanguay, Oregon State University**: Collaborates for nanotoxicology studies using zebrafish and coauthor of a manuscript for submission to ACS Nano, and co-PI of an RO1 proposals to NIH and a multi-institutional CEIN proposal to NSF.

13. **Dr. M. H. Engelhard, Pacific Northwest National Lab**: Carried out x-ray photoelectron spectroscopy studies and coauthor of 14 refereed journal articles and co-presenter of several conference presentations.

14. **Mr. R. Baldner, Micron Technology, Boise**: Conducted Raman studies and coauthor of a journal article published in Physical Review B.

16. **Dr. L. C. Brunel, National High Magnetic Field Laboratory (NHMFL), Tallahassee**: Collaborated on the studies of magnetic nanoparticles using high magnetic field ESR and coauthored a journal article published in Magnetism and Magnetic Materials.

17. **Dr. S. Chambers, Pacific Northwest National Lab**: Collaborated on the studies of Co doped titanium oxide films and coauthored a journal article published in Nuclear Instrument and Methods B.

18. **Dr. J. Freed, Cornell University**: Conducted high field electron magnetic resonance studies and coauthored a journal article published in Applied Magnetic Resonance.

19. **Dr. J. Philip, Catholic University, Washington DC**: Collaborated on electrical property measurements and coauthor of a journal article published in Nature Materials and another under review in Physical Review B.

21. Dr. M. S. Seehra, West Virginia University: Postdoctoral advisor and coauthor of more than a dozen journal articles.

22. Dr. N. C. Giles, West Virginia University, Morgantown, WV: Conducted EPR studies and coauthor of a journal article published in Journal of Physics: Condensed Matter.

24. Dr. S. Thevuthasan, Pacific Northwest National Lab: Collaborated on dilute magnetic semiconductors and coauthored more than half a dozen journal articles.

25. Dr. Edward M. Eyring, Department of Chemistry, University of Utah: Collaborated on catalysis research, and coauthored a journal article in Energy and Fuel.

26. Dr. C. Wang, Pacific Northwest National Lab: Collaborated on TEM studies and coauthored more than half a dozen journal articles.

27. Dr. V. Shuttanandan, Pacific Northwest National Lab: Collaborated on Particle Induced x-ray Emission (PIXE) studies and coauthored more than half a dozen journal articles.

28. Dr. R. Kokadapu, Pacific Northwest National Lab: Collaborated on Mossbauer spectroscopy studies and coauthored a journal article in Physical Review B and another manuscript is currently under review.

29. Dr. G. P. Huffman, University of Kentucky: Collaborated on the studies of nanocatalysts, and coauthored three journal articles in Physical Review B, Fuel Processing Technology, and ACS preprints.

30. Dr. D. McIlroy (Physics), University of Idaho: Collaborated on nanowire studies as part of two major NSF-EPSCoR grants.

31. Dr. J. D. Harris, Department of Chemistry, Northwest Nazarene University: Synthesizes oxide nanostructures, co-PI of two joint grants from NSF, and a coauthored manuscript is currently under review for publication in Journal of Applied Physics.

32. Dr. P. Shapiro (Chemistry), University of Idaho: Collaborated on semiconductor nanoparticles and were co-PIs of two DoE-EPSCoR grants and an NSF proposal.

33. Dr. D. Gamelin (Chemistry), Dr. K. Krishnan (Materials Science) and Dr. M. Omsted (Physics), University of Washington, Seattle, WA: Collaborated on dilute magnetic semiconductor materials and devices and jointly submitted a major NSF proposal.

34. Dr. R. G. Rodriguez and Dr. J. Pak, Chemistry, Idaho State University: Collaborated on thin film photovoltaics, published two journal articles in Chemistry of Materials and Journal of Nanomaterials, and were co-PIs of two DoE-EPSCoR grants and a NASA EPSCoR proposal.

International Collaborations

35. Dr. X. Mathew, Centro de Investigacion en Energia-UNAM, Mexico: Collaborated on optical studies and solar cells, jointly published two journal articles in Journal of Applied Physics.
36. Dr. G. Kostorz and Dr. B. Schönfeld, ETH Zurich, Switzerland: Collaborated on the studies of magnetic shape memory alloy sand co-PIs of an NSF funded Materials World Network grant.

37. Dr. S. K. Misra, Physics, Concordia University, Montreal, Canada: Conducted electromagnetic resonance studies on dilute magnetic semiconductors and jointly published 5 journal articles in Journal of Applied Physics and Applied Magnetic Resonance.

38. Dr. B. Satpati, Institute of Physics, Bhuvaneswar, India: Collaborated on TEM studies of thinfilms and published a journal paper jointly in Nature Materials.

41. Dr. S. V. Bhat, Department of Physics, Indian Institute of Science, Bangalore, India: Worked on the magnetic studies of dilute magnetic semiconductors and published a journal article in Journal of Applied Physics.

42. Dr. S. I. Andronenko, Department of Physics, Kazan Federal University, Russian Federation: Worked on the detailed simulation studies of EPR data and published five journal articles and two more manuscripts are currently under review.

43. Dr. M. R. P. Kurup, Chair, Department of Chemistry, Cochin University of Science and Technology, India: Worked on the synthesis and studies of novel anti-cancer drug analogues and published three journal articles in Inorganic Chemistry Communications, Spectrochimica Acta and Polyhedron.

44. Dr. D. Pink, Department of Physics, St. Francis Xavier University, Antigonish, Canada: Conducts computations studies and coauthor of a journal article published Langmuir.

45. Dr. V. Chernenko, Institute of Magnetism, NASU and MESU, Kiev, Ukraine: Collaborated on the studies of magnetic shape memory alloy thinfilms and jointly published a refereed journal paper in the Journal of Applied Physics.

STUDENT ADVISING

Undergraduate students

1. Mr. Michael S. Byrns (Physics): Nov. 2002 - June 2003; Prepared ZnO nanoparticles and completed PHYS 482: Senior Project.

2. Mr. Andrew Wood (Electrical Engineering): January - July, 2003; Prepared nanoparticles of TiO₂ and ZnO; Received internship at Hewlett-Packard, Boise.

4. **Mr. Jason Hays (Physics);** June 2003 – December 2004: Investigated transition-metals-doped ZnO and SnO2; Completed PHYS 482: Senior Project; *Published 4 research papers* and admitted to graduate school. Won *second prize for best student presentation* at a national level competition held as part of the 26th Annual Symposium on Applied Surface Analysis, Richland, WA, June, 2004 and the *2004 Undergraduate Research and Creative Activity Award* from Boise State University.

5. **Mr. Aaron Thurber (Physics);** June, 2004 – July 2006: Worked on Fe doped SnO2, *published 3 research papers in journals*. Selected for a paper presentation at the National EPSCoR Research Conference, September 2005 to be held at Puerto Rico. Got admitted to MS program.

6. **Ms. Prabha Malamakkal (Biology);** June – August 2006; Worked on the interactions of nanoparticles with bacteria; Got admitted to MS program.

7. **Ms. Jill West (Physics);** December 2005 – present; Working on Fe and Sb doped SnO2 nanoparticles; presented papers in three meetings.

8. **Mr. Chadd Vankomen (Physics);** May 2005 – present; Working on transition metal doped ZnS and SnO2. *Published several papers.*

9. **Mr. Sean Stephens (Physics):** September – December 2006; Worked on nanoparticle synthesis.

11. **Mr. Jason Bell (Biology):** December 2006 – 2009; Investigating the toxicity of nanoparticles to biological systems. *Published a research paper in Applied Physics Letters.*

15. **Mr. Gordon A. Alanko (Physics) - January 2010 – present:** Size-controlled SnO2 nanoparticle synthesis. *Published a journal paper.*

16. **Mr. Joshua J. Anghel (Physics) – June 2008 – present:** Working on semiconductor thin films and CuO nanoparticles. *Published three journal papers.*

17. **Mr. Kelsey Dodge (Physics) - November 2008 - February 2009:** Photocatalytic studies of oxide nanoparticles.
18. **Mr. Jordan Chess (Physics)** - November 2008 - present: Magnetic studies of dilute magnetic oxide nanoparticles.

Graduate Students:

2. **Mr. Aaron Thurber (Materials Science and Engineering)**; August, 2006 – present; Topic: Magnetic semiconductors; Thesis committee chair: A. Punnoose. Published several research papers.

3. **Mr. Russell Benson (electrical engineering)**; August, 2004 – December 2006; Topic: Preparation and characterization of Cr doped ZnO thin films using a sputter deposition system (in collaboration with Dr. W. B. Knowlton). Published a research papers. Thesis committee chair: Dr. W. B. Knowlton.

4. **Mr. Robert Hanson (electrical engineering)**; August, 2004 – December 2006; Topic: Fabrication of ZnO thin films (in collaboration with Dr. W. B. Knowlton). Published a research papers. Thesis committee chair: Dr. W. B. Knowlton.

5. **Mr. Markus Chmielus (Materials Science and Engineering)**; August, 2006 – present; Topic: Magnetic Shape Memory Alloys (in collaboration with Dr. P. Mullner and Dr. W. B. Knowlton). Published several research papers. Thesis committee chair: Dr. P. Mullner.

7. **Ms. Cory Hanley (Biology)**; August, 2006 – present; Topic: Nanoparticle toxicity (in collaboration with Dr. Denise Wingett and Dr. Kevin Feris). Published several research papers. Thesis committee chair: Dr. D. Wingett.

8. **Ms. Lydia Johnson (Materials Science and Engineering)**; 2008-present; Topic: Synthesis and applications of ZnO nanoparticles; Published several research papers. Thesis committee chair: Drs. A. Punnoose/D. Tenne.

Postdoctoral Fellows:

1. Dr. K. M. Reddy, Ph. D (Indian Institute of Chemical Technology, Hyderabad, India); Jan. 2004 – October 2008. Now working as a research scientist at Ohio State University.

2. Dr. Hua Wang, Ph. D (State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, China) October; 2006 - October, 2007. Now working as a research scientist at Pacific Northwest National Laboratory.

3. Dr. Jianhui Zhang, Ph. D, (Associate Professor, National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, China), August 2008-August 2010. Now working as an Associate Professor of Physics at Nanjing University, China.

4. Dr. Srinivasa Rao Singamany Ph. D (Indian Institute of Science, Bangalore, India); June 2011 - present.

ACADEMIC SERVICE

Department of Physics:

- Member, Departmental Tenure Committee (review of tenure progress of Assistant Professors), 2006-present
- Member, Biophysics Faculty Search Committee, 2007.
- Chair, Biophysics Faculty Search Committee, 2006.
- Chair, Nanophysics Faculty Search Committee, 2006.
- Member, Biophysics Faculty Search Committee, 2004.
- Member, Biophysics Faculty Search Committee, 2011
- Long-Term Planning Committee, 2002-present.
- Physics Internship Coordinator, College of Arts and Sciences, 2003-present.
- Member of Physics Curriculum Revision Committee.
- Member of Physics Program Review Committee (review and planning of Physics program)

College of Arts and Science:

- Member, Dean Search Committee, 2006.
• Reviewed and provide suggestions on the applications of candidates for the Materials Chemistry position in the Department of Chemistry, 2006
• MP 309 Lab Renovation Committee, 2004 - 2005.
• Served/serving as the graduate committee member for Ms. Cory Hanley (Biology), Ms. Janet Layne (Biology) and Panagiota Louka (Biology).

University:
• Intellectual Property and Patent Committee, August 2002 - 2008
• Member, Interdisciplinary Materials Science and Engineering Ph. D program working group (5 members) to develop curriculum and notice of intent.
• Environmental Health and Safety Committee, 2005 – present.
• Faculty Research Advisory Committee, 2005 – 2006.
• Member, TEM (Materials Science) faculty search committee, 2006. Also, visited different TEM vendor sites to identify the most suitable TEM for Boise State.
• Member of the Interdisciplinary Faculty Oversight Committee which launched the interdisciplinary Materials Science and Engineering (MS&E) graduate program at Boise State University. Involved in the curriculum development, 2002 - present.
• Member of the university wide committees (Biophysics and Biomaterials research emphases) for the proposed PhD program in Biomolecular Science, 2005.
• Electrical and Computer Engineering PhD Program support faculty group.
• Member of the graduate thesis committee of Russell Benson (electrical engineering), Robert Hanson (electrical engineering), Markus Chmielus (Materials Science and Engineering); Dave Carpenter (Materials Science and Engineering).
• Chair of the graduate thesis committee of Jason Hays (Materials Science and Engineering) 2004-2007
• Chair of the graduate thesis committee of Aaron Thurber (Materials Science and Engineering) 2006-2008.
• Chair of the graduate thesis committee of Ms. Lydia Johnson (Materials Science and Engineering); 2008 -present
• Boise State University Speaker’s Bureau.
SERVICE TO THE SCIENTIFIC COMMUNITY

- Member of the International Scientific Committee of the International Conference on Composites/Nano Engineering (ICCE) 2003-2006.
- Technical Advisory Board member of Computational Mechanisms Inc., an Information Technology based company located in Santa Clara, CA.
- Ph. D thesis examiner for students from Indian Institute of Science, Andhra University and Pondichery University in India.
- Proposal reviewer – National Science Foundation, Research Corporation and Petroleum Research Fund, Pacific Northwest National Laboratory User proposals, Canadian Research Council and Department of Energy Office of Basic Sciences,
- Member, American Physical Society (APS)
- Member, International ESR/EPR Society (IES)
- Member, Asia-Pacific ESR/EPR Society (APES)

TEACHING EXPERIENCE

- PHYS 111 General Physics Lab
- PHYS 112 General Physics Lab
- PHYS 309 Introductory Modern Physics with Applications
- PHYS 310 Introductory Modern Physics Lab
- PHYS 482 Senior Project
- PHYS 515 Solid State Physics (graduate level)
- PHYS 522 Advanced Topics: Solid State Physics (graduate level)
- PHYS 523 Physical Methods of Materials Characterization (graduate level)
- PHYS 696 Directed Research (graduate level)
- PHYS 593 Thesis
REFEREEED PUBLICATIONS
(** indicates undergraduate students, * indicates graduate students)

Manuscripts under review

4. Improving the selective cancer killing ability of ZnO nanoparticles using Fe doping, Aaron Thurber, Denise G. Wingett, John W. Rasmussen, Janet Layne*, Lydia Johnson*, Dmitri A. Tenne, Jianhui Zhang, Charles B. Hanna, and Alex Punnoose, Nanotoxicology (Submitted after revision 2010)

Published or Accepted Papers

2010

2009

16. A 236-GHz Fe3+ EPR study of nano-particles of the ferro-magnetic room-temperature semiconductor Sn1-xFexO2 (x=0.005), Sushil K. Misra, S. I.

2007

2006

49. “Effect of interparticle interaction on the magnetic relaxation of NiO nanorods”
H. Shim*, A. Manivannan and M. S. Seehra, K. M. Reddy and A. Punnoose,

50. “The effect of preparation conditions on the Fe incorporation and ferromagnetism
of Sn\textsubscript{1-x}Fe\textsubscript{x}O\textsubscript{2}: A Raman spectroscopic investigation”,
Xavier Mathew, C. Mejia-Garcia*, G. Contreras-Puente, J. Hays**, and A. Punnoose,

2005

51. “Development of high temperature ferromagnetism in SnO\textsubscript{2} and paramagnetism
in SnO by Fe doping”,
A. Punnoose, J. Hays**, A. Thurber**, M. H. Engelhard, R. K. Kukkadapu, C. Wang,

52. “Relationship between the structural and magnetic properties of Co doped SnO\textsubscript{2}
nanoparticles”,
J. Hays**, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin and K. M. Reddy,

53. “High-frequency electron magnetic resonance and magnetic studies of ferrihydrite
nanoparticles and evidence of a phase transition”,

54. “Possible metamagnetic origin of ferromagnetism in transition-metal-doped
SnO\textsubscript{2}”

2004

55. “Room temperature ferromagnetism in chemically synthesized Sn\textsubscript{1-x}Co\textsubscript{x}O\textsubscript{2}
powders”,

56. “Magnetic properties of ferrihydrite nanoparticles doped with Ni, Mo and Ir.”
A. Punnoose, M. Seehra, N. Shah, T. Phanthavady** and G. P. Huffman,

57. “Catalysis for synthesis gas formation from reforming of methane”
M. V. Iyer*, L. P. Norcio*, A. Punnoose, E. L. Kugler, M. S. Seehra and D. B.

58. “Size dependence of the exchange bias and coercivity in CuO nanocrystals.”

59. “On the origin of room temperature ferromagnetism in Co-doped TiO\textsubscript{2} films”
A. Punnoose, M. S. Seehra, W. K. Park and J. S. Moodera; Journal of Applied
Physics, 93, 7867, (2003).
60. “Room Temperature Ferromagnetism in Transition Metal Doped Semiconductors (Invited)”

61. “X-ray diffraction and electron magnetic resonance studies of M/Fe/Al2O3 (M = Ni, Mo and Pd) catalysts for CH4 to H2 conversion.”

63. “Hysteretic Ferromagnetic Resonance as a probe for coercivity, Exchange Bias and Loop Asymmetry.”

64. “High Frequency/High Field Electron Magnetic Resonance Studies of Ferrihydrite Nanoparticles”

65. “Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature”

66. “Hysteresis anomalies and exchange bias in 6.6nm CuO nanoparticles.”

67. “Finite size effects in CuO nanoparticles (Invited).”

68. “Temperature dependence of paramagnetic resonance in pure and doped ferrihydrite nanoparticles.”

69. “ESR observation of W5+ and Zr3+ states in Pt/WOx/ZrO2 catalysts.”

70. “Characterization of CuCl2/PdCl2/activated carbon catalysts used in the synthesis of diethyl carbonate.”

71. “Supported binary catalysts for dehydrogenation of methane”
72. “From bulk to nanoscale magnetism and exchange bias in CuO nanoparticles”

73. “Deviations from the curie-law variation of magnetic susceptibility in antiferromagnetic nanoparticles”

75. “Synthesis and antiferromagnetism of Mn₅O₈.”

76. “Effect of Si doping on the EMR properties of ferrihydrite nanoparticles”

77. “Interaction of oxygen with nanophasic carbons investigated by electron spin resonance spectroscopy”

78. “Properties of ITO films prepared by RF magnetron sputtering”

79. “CdS thin films prepared by RF magnetron sputtering in Ar atmosphere.”
A. Punnoose, M. Maarafi, G. Prabu and F. El Akkad; Physica status solidi (a) 177, 453 (2000).

80. “Effect of substrate temperature on the structural, electrical and optical properties of ITO films prepared by RF magnetron sputtering:”

81. “EPR and superposition model investigations of Mn²⁺ ions doped in sodium formate single crystal”

83. “EPR and optical absorption studies of VO⁺² and Cu⁺² ions doped in LiHSO₄ Single Crystals.”

84. “Copper tetramers in high temperature superconductors.”

85. “EPR study of Cu$^{2+}$ ion doped in potassium oxalate monoperhydrate single crystal.”

86. “EPR studies of High-T$_c$ superconductors and related systems (Review article).”

87. “An investigation of the magnetic dilution effect in CaO-CuO and SrO-CuO systems.”

88. “EPR and optical studies of VO$^{2+}$ ions in sodium formate single crystal.”

89. “S = 1 and S = 2 EPR signals in modified CuO and BaCuO$_2$.”

90. “A magnetic transition in CuO thin films on glass and quartz substrates.”

91. “Crystal Structure of KNiBr$_3$.3H$_2$O.”

92. “An EPR study of manganese (II) complexes in Potassium Chromate single crystal.”

93. “EPR Observation of Cu$^{2+}$ - Cu$^{2+}$ pairs in cupric oxide powders.”

94. “EPR and resistance studies of BaO-CuO systems.”

95. “EPR study of CuO bulk powder and thin films.”
Patents

98. “Development of ferromagnetism in SnO₂ by Fe doping” A. Punnoose, Provisional patent application submitted by Boise State University, September 2004; Conventional patent application filed on August 1, 2005. Pending.

103. 13/079,469, filed as a continuation-in-part of 12/235,575, April 4, 2011, Fluorescent Particulates Comprising Nanoscale ZnO Layer and Exhibiting Cell-Specific Toxicity.

104. 13/079,594 filed April 4, 2011, Nanoparticles that Preferentially Associate with and Kill Diseased Cells for Diagnostic and Therapeutic Applications.
CONFERENCE PRESENTATIONS
(** indicates undergraduate students, * indicates graduate students)

Invited Talks

3. *Oxide Semiconductor Nanostructures*
 Department of Physics, Indian Institute of Science, Bangalore, India on June 5, 2003

4. *Dilute Magnetic Semiconductor Nanoparticles*
 Chemistry Department, University of Idaho, April 26, 2007.

7. *Physics of Nanoscale oxides*; Department of Physics, Idaho State University, 2006.

8. *Nanoscale Semiconductor Oxides for Multifunctional Device Applications*,
 International Materials Research Congress (IMRC), August 22-26, 2004, Cancun, Mexico.

9. *EPR Studies of Magnetic Nanoparticles*,

 Center for Materials for Advanced Technology (c-MAT), Trissur, India, December 3, 2004.

11. *Band Theory and Semiconductor Nanoparticles*,

13. *Finite Size Effects in CuO Nanoparticles*,

14. *Nanoscale Magnetism*
 Indian Institute of Science, Bangalore, India on June 5, 2003

15. *Dilute Magnetic Semiconductors*

16. *Electron Magnetic Resonance in Magnetic Nanoparticles*
 31st AMPERE Congress on Magnetic Resonance and Related Phenomena, at Adam Mickiewicz University, Poznan, Poland, July 14-19, 2002.

Contributed Presentations

7. Correlation between saturation magnetization, bandgap and lattice volume of transition metal (M = Cr, Mn, Fe, Co or Ni) doped Zn$_{1-x}$M$_x$O nanoparticles for x = 0.02 and 0.05; J. Anghel, A. Thurber, D. Tenne, C. B. Hanna, A. Punnoose, 11th joint Intermag-MMM conference, January 11-18, Washington DC, 2009.

9. Size-controlled preparation of CuInS2 nanoparticles in supercritical CO$_2$. Pak, Joshua J.; Rodriguez, Rene G.; Fox, Robert V.; Punnoose, Alex; Thurber, Aaron; Bajracharya, Cyril; Lau, Lisa D. Abstracts of Papers, 236th ACS National Meeting, Philadelphia, PA, United States, August 17-21, 2008 (2008), INOR-240

12. Transition from n-type to p-type destroys ferromagnetism in semiconducting Sn$_{1-x}$Co$_x$O2 and Sn$_{1-x}$Cr$_x$O2 nanoparticles. C.B. Van Komen, M.S. Seehra and A. Punnoose, Physics, Boise State University, Boise, ID; 53rd Magnetism and Magnetic Materials conference (AIP) in Austin, TX November 2008.

17. K. M. Reddy and A. Punnoose, “Mapping ferromagnetism in Ti_{1-x}Co_xO₂ – Role of preparation temperature (200 – 900°C) and doping concentration (0.00015 < x < 0.1)”; Accepted for presentation in 51st Annual Conference on Magnetism and Magnetic Materials, Baltimore, January 2007.

18. Aaron Thurber**, Alex Punnoose; “High-temperature field-induced activation of ferromagnetism in Ce_{1-x}Ni_xO₂”; Accepted for presentation in 51st Annual Conference on Magnetism and Magnetic Materials, Baltimore, January 2007.

21. K. M. Reddy, J. Hays*, A. Thurber** and A. Punnoose; “Magnetic gas sensing using Sn_{0.95}Fe_{0.05}O₂: A novel application of magnetic semiconductor nanoparticles”, Accepted for presentation in 51st Annual Conference on Magnetism and Magnetic Materials, Baltimore, January 2007.

45. A. Punnoose, “Nanoscale Semiconductor Oxides for Multifunctional Device Applications (Invited)”, A. Punnoose, International Materials Research Congress (IMRC), Cancun, Mexico, August 22-26, 2004;

RESEARCH GRANTS

PI or co-PI of 24 grants awarded during 2002-2010, totaling ~ $7.81M

Number of proposals submitted: 78

Number proposals funded: 24

Funded Projects

1. “NSF-MRI: Acquisition of an XPS system for interdisciplinary Research and Education”; Agency: National Science Foundation; PI: A. Punnoose; Co-PIs: D. Butt (MSE), T. Fujiwara (Chemistry), K. Feris (Biology), J. Harris (Chemistry, NNU), Duration: 2007-2010; Amount: $744,000.

2. “Novel nanostructured materials for solar cell and nanoelectronics applications” DoE EPSCoR program; PI: R. Holman (ISU), Co-PIs: A. Punnoose (BSU), D.
Tenne (BSU), J. Pak (ISU), A. Hunt (ISU), R. Rodriguez (ISU), P. Shapiro (UI), Y. Qiang (UI), L. Bergmann (UI) and C. Berven; Duration: 2007-2010; Amount: **$1.35M.**

3. MRI: Acquisition of a FACS (Fluorescent Activated Cell Sorter) to Support Collaborative Research and Education in Bimolecular Sciences and Nanomaterials Applications; **$683,775;** 2008-2011; PI: Denise Wingett; Co-PI: Alex Punnoose; National Science Foundation; Award Number: DBI-0821233.

4. Utility of Zinc Oxide Nanoparticles for Selective Cancer Cell Killing; **$5,000;** 2008-2009; PI: Denise Wingett; Co-PI: Alex Punnoose; St. Luke’s Mountain States Tumor & Medical Research Institute; Award Number: NECWINGETT6382.

5. Semiconductor-Based Nanotechnology Applications; **$750,000;** 2009-2011; PI: Charles Hanna; Co-PI: Alex Punnoose; Department of the Army/DOD; Award Number: W911NF-09-1-0051.

6. Collaborative Research: RUI: A Study of the Solution-Based Synthesis of Ndoped ZnO, Mn- and Co-doped ZnO, and (N,Co)-codoped ZnO; **$63,530;** 2008-2011; PI: William Knowlton; Co-PI: Alex Punnoose; National Science Foundation; Award Number: DMR-0840227.

7. “NSF-Europe Materials Collaboration: Micromechanics of Magnetic Shape-Memory Alloys” Agency: National Science Foundation-REU supplement proposal; Duration: 2006; Amount: **$13,000;** Peter Mullner (PI), Alex Punnoose (Physics) and Bill Knowlton (MSE, ECE).

9. "Acquisition of a Transmission Electron Microscope for Multidisciplinary Research and Education", NSF-MRI proposal (2005-2008); Amount: **$ 997,000** [$692,000 (NSF), $125,000 (Micron) and $ 180,000 (BSU)]; PIs: J. Hampikian (PI), A. Punnoose, P. Mullner, and J. Oxford (co-PIs).

21. 2005 Faculty Research Associates Program award, Agency: Boise State University; Amount: $4,800; PI: A. Punnoose

22. College of Arts and Sciences Travel Grant - 2003; Agency: Boise State University; Amount: $300; PI: A. Punnoose.

24. “Development of Materials Characterization CD-ROM of Virtual Labs”; Alex Punnoose; 2006 Mini grant-COAS, Boise State University; Amount: $1,000.

Declined Proposals

Submission date: 02/12/03; PIs: A. Punnoose, D. N. McIlroy (UI), L. Bergman, UI.

26. “An REU Site in Chemistry at Boise State University”; Agency: National Science Foundation; Amount: $208,543; Submission date: 03/01/05; PI: Susan Shadle.

27. “DEPSCoR: New Transparent Magnetic Semiconductors for Spintronic Applications”; Agency: AFOSR; Amount: $500,000; Submission date: 10/01/02; PI: A. Punnoose (Top ranked proposal in the statewide competition)

28. “Investigation of the Magnetic Properties of Ferrihydrite Nanoparticles”; Agency: Faculty Research Grant Program, BSU; Amount: $5,000; Submission date: 02/03/03; PIs: A. Punnoose;

30. “CAREER-Experimental Investigations of ZnO-MO System for Spintronic Applications”; Agency: National Science Foundation; Amount: $400,000; Submission date: 07/24/03; PI: A. Punnoose.

32. “Acquisition of an Inert Atmosphere Glovebox: A Multi-User Instrument for the College of Arts and Sciences”; NSF-Idaho-EPSCoR Instrumentation program; Amount: $70,000; Submission date: 01/21/04; PI's: Jeff Peloquin, Dale Russell, Don Warner; Bill Knowlton; Alex Punnoose.

34. “Control of Spin Interactions and Dynamics of Magnetic Configuration”; DoD-EPSCoR 2004; Amount: $710,000; PIs: Y. Qing, Y-K Hong and A. Punnoose;

35. “Linked-particle nanowires for nanocircuitry”; Christopher Berven (Physics, UI), Charles Hanna (Physics, BSU), Alex Punnoose (Physics, BSU), Pam Shapiro (Chemistry, UI), EPSCoR II renewal pre-proposal for the nanomaterials part.

Peloquin, DoD-DEPSCoR Grant; Amount: $595,981. (Top ranked proposal in statewide competition)

38. “Radiation Effects on Individual Nanowires for Next Generation of Sensors and Electronic Devices”; Christopher Berven PI (UI), Charles Hanna, Alan Hunt (ISU), David McIlroy (UI), Alex Punnoose (BSU); NSF-EPSCoR II renewal pre-proposal for the nanomaterials part.

40. “Magnetic Shape-memory Based Magnetic Pico-sensor (MSMMPS)” P. Mullner (PI) and W. B. Knowlton (co-PI); J. Jessing (co-PI) and R. J. Baker (co-PI), Elec. Eng.; A. Punnoose (co-PI) and C. Hanna (co-PI), DoD MURI grant. Amount: $3,160,700

41. “RUI: Acquisition of a Vibrating Sample Magnetometer Option (for PPMS) with Variable Temperature Capability for Materials Research”, Agency: National Science Foundation; Amount: $85,600; Submission date: 01/07/04; PI: A. Punnoose, co-PIs: W. B. Knowlton and A. Moll.

43. “Characterization and Reliability of Advanced Microelectronic Materials”, W. B. Knowlton (Electrical Engineering), A. Punnoose (Physics), A. Moll (Mechanical Engineering) V. Gopal (Materials Science) and P. Mullner (Materials science); NSF-EPSCoR II renewal pre-proposal.

45. “An REU Site in Chemistry at Boise State University”; Agency: National Science Foundation; Amount: $208,543; PI: Susan Shadle; 2005

46. “Fabrication, Processing and Characterization of Magnetic shape-memory Alloys Containing Rare-earth Elements”; Agency: National Science Foundation -MPM (Manufacturing and processing of materials) proposal; 2005; Amount: $691,000; Peter Müllner (PI), Alex Punnoose, Darryl Butt and W. B. Knowlton.

48. “A High Sensitivity Thermal Analysis System for Materials Research”, A. Punnoose, Dr. Tomoko Fujiwara (Chemistry), Peter Mullner (Materials Science and Engineering), Jeff Jessing (Electrical Engineering, Byung Kim (Physics), William B. Knowlton (EE), Ken Cornell (Chemistry); 2005 EPSCoR Instrumentation program; Amount: $74,000.
49. “UHV STM/AFM for Atomic Scale Interdisciplinary Research”, Byung Kim and Alex Punnoose; 2005 EPSCoR Instrumentation program; Amount: $91,000.

50. “Instrumentation for Multidisciplinary Collaborative Nano-Biotechnology Research”, NSF-EPSCoR Instrumentations program 2006; Submitted September 2006; K. Feris (Biology), A. Punnoose, D. Tenne (Physics) and W. Kuang (EE); Amount: $50,000.

51. “Investigation of antimicrobial nanoparticle thinfilms for development of novel antibiowarfare agent materials”; DEPSCoR 2006; Submitted September 2006; K. Feris (PI) and A. Punnoose; Duration: 2007-2010; Amount: $482,130.

53. “MRI: "Acquisition of a FACS to Support Research and Teaching in Biological, Biochemical, Biophysical, and Materials Sciences at Boise State University”; Submitted December 2006; Preproposal for NSF-MRI submission; PI: D. Wingett; Co-PIs: A. Punnoose and 11 others; Amount: $480,000.

54. “Oxide thin-film heterostructures for spintronics: Magnetism, spin-dependent transport and semiconductor integration”; Agency: National Science Foundation; K. Kannan (MSE, UW), D. Gamelin (Chemistry, UW), M. Olmstd (Physics, UW), S. Chambers (PNNL) and A. Punnoose (Physics, BSU); Duration: 2007-2010; Amount: $1,685,847 (Submission date: October 20, 2006)

55. “A Proposed Method for the Controlled Synthesis of Discrete Nanoscale Ternary Metal Chalcogenide Clusters of Tunable Size and Composition via the Photolytic Decomposition of Single Source Precursors”, Agency: National Science Foundation; P. Shapiro (Chemistry, UI), A. Punnoose (Physics, BSU); D. Rabinovich (Chemistry, University of North Carolina); Duration: 2007-2008; Amount: $148,000 (Submission date: November 3, 2006)

56. “NIRT: Wide band gap oxides based nanostructures”, Agency: National Science Foundation; PI: A. Punnoose; Co-PIs: K. Feris (Biology) and D. Wingett (Biology), Duration 2007-2010; Amount: $1,250,000 (Submission date: November 15, 2006)

57. “Investigation of the interactions of semiconductor oxide nanoparticles with eukaryotic and prokaryotic systems”, Agency: National Institute of Health – R21, A. Punnoose (PI) and K. Feris (co-PI); Amount: $528,000 (Submission date: August 15, 2006)

58. DoE EPSCoR: Ecologically Sustainable and Socioeconomically Responsible Production of Biofuels and Bioproducts; $800,000; 2010-2013; PI: Matthew Morra, co-PI: Alex Punnoose, U.S. Department of Energy/DOE EPSCoR
59. Science at the Nano-Bio Interface-Innovative Defense Applications Assessing the Nanotoxicity and Health Effects; $2,000,000; 2009-2010. PI: Alex Punnoose; Co-PI: Kevin Feris.

60. “Semiconductor-based Nanotechnology Applications”, 2006 Appropriations Application; Agency: Department of Defense, PI: A. Punnoose, Duration 2007-2010; Amount: $ 1.5 Million (Submission date: November 3, 2006)

61. “MULTIDISCIPLINARY APPLIED NUCLEAR SCIENCES FOR THE 21ST CENTURY”
Doug Wells (ISU), Herbert Maschner (ISU), Robert Holman (ISU), Linda DeVaux (ISU), Alex Punnoose (Boise State University), 2008 NSF – EPSCoR pre-proposal (in review), Amount: 9,000,000.

63. “MRI: Acquisition of a dual beam SEM/FIB for multidisciplinary Research and Education” Full proposal for NSF-MRI program; PI: M. Frary; Co-PIs: P. Mullner (MSE), A. Punnoose (Physics), M. Schmitz (Geosciences), M. Mitkova (EE), Duration: 2007-2010; Amount: $1,454,546.

65. “Nanotoxicity evaluation and nanotechnology-based biowarfare countermeasures, therapeutics and other defense applications”, 2008 Appropriations Application; Agency: Department of Defense, PI: A. Punnoose, Duration 2009, Amount: $4,000,000

66. “Life Sciences - Nanoscience Innovations” NSF-EPSCoR RII white paper; PIs: A. Punnoose (BSU), R. Hill (UI) and C. Daniels (ISU); Duration: 2008-2011; Amount: $9M.

68. “NSF IMR: Acquisition of Fourier Transform Infrared Spectroscopic Facility for Materials Research and Student Training” Agency: National Science Foundation; PI: D. Tenne, Co-PIs: Alex Punnoose, Department of Physic, Boise State University, Dr. Jerry D. Harris, Department of Chemistry, Northwest Nazarene University; Duration: 2008 – 2011; Amount: $250,000; Submission date: January 10, 2008.

69. Semiconductor-based nanotechnology applications – ii; PI: Alex Punnoose; Duration: 2011-2014; Amount: $1.5M

70. Center for Bioenergy and Bioproducts, SBOE-HERC, PI: Mathew Morra, co-PI: Alex Punnoose, Duration: 2010-2012, Amount: $990,000.
71. NSF-BME proposal “Improving the therapeutic potential of ZnO nanoparticles for cancer treatment”; PI: A. Punnoose, collaborator: D. Wingett; Duration: 2009-2012, Amount: $300,000

72. “Bicoastal-National Institute for Nanotechnology and the Environment (B-NINE)”, Agency: National Science Foundation – Center for Environmental Implications of Nanotechnology program; BSU subcontact PI: A. Punnoose, Co-PIs: D. Wingett (Biology), C. Hanna (Physics) and K. Feris (Biology); Duration: 2008 – 2013; Amount: $1,000,000

73. NIH R15 Differential toxicity of oxide nanoparticles: Role of electrostatic interactions; PI: A. Punnoose, collaborator: D. Wingett; Duration: 2009-2012, Amount: $300,000

74. NSF-MRI Acquisition of Fourier Transform Infrared Spectroscopic Facility for Interdisciplinary Research and Education; Dmitri Tenne, Maria Mitkova, Daryl Butt, Alex Punnoose, 2010 BSU internal competition; Amount: $388,000.

75. NIH R01; Differential cytotoxicity of nanoparticles and safer nanotechnology solutions; PIs: A. Punnoose and D. Wingett; Duration: 2009-2012, Amount: $1.7M.

Proposals in-review

77. Idaho NASA EPSCoR Program; Thin film photovoltaics through novel nanoparticles; PI: J. Pak (ISU), co-PIs: Rene Rodriguez and Andrew Holland (ISU) and Alex Punnoose (BSU); Duration: 2011-2014, Amount: $750,000. Notice of Intent approved.

78. HERC Incubation Fund; Selective Cancer Killing Using ZnO Nanoparticles; PI: A. Punnoose, co-PI: D. Wingett; Duration: 2011-2012, Amount: $50,000; approved by Boise State for consideration by HERC.

Proposals in preparation

79. Resubmission of revised NSF-BME proposal “Improving the therapeutic potential of ZnO nanoparticles for cancer treatment”; PI: A. Punnoose, co-PI: D. Wingett; Duration: 2011-2014, Amount: $500,000

80. Resubmission of revised NIH R01 proposal; Differential cytotoxicity of nanoparticles and safer nanotechnology solutions; PIs: A. Punnoose and D. Wingett; Duration: 2011-2014, Amount: $1.7M.

81. NSF : Environmental and Health impacts of oxide nanoparticles; PI: A. Punnoose, co-PIs: Wingett, Hanna, Feris, Tinker; Duration: 20011-2014, Amount: $600,000

* * * * *
CURRICULUM VITAE

Rajesh Nagarajan, Ph. D.

Assistant Professor Phone: 208-426-1423
Department of Chemistry & Biochemistry, SN313 Fax: 208-426-3027
Boise State University Cell: 208-761-1913
1910 University Dr Email: rajnagarajan@boisestate.edu
Boise, ID 83725

EDUCATION AND TRAINING

1993-1996 Madras Christian College, Chennai, India B.Sc (Chemistry)
1996-1998 Indian Institute of Technology, Chennai M.Sc (Chemistry)
1998-2004 Wesleyan University, Middletown, CT Ph.D (Chemistry)
2004-2006 Johns Hopkins University, Baltimore, MD Postdoc

ACADEMIC AND PROFESSIONAL APPOINTMENTS

06/2010 - Assistant Professor, Department of Chemistry & Biochemistry,
 Boise State University, Boise, ID
08/2006 - 05/2010 Assistant Professor, Department of Chemistry, Skidmore
 College, Saratoga Springs, NY
02/2004 - 07/2006 Postdoctoral Fellow, Department of Pharmacology and
 Molecular Sciences, The Johns Hopkins University School of
 Medicine, Baltimore, MD
01/2002 - 01/2004 Grad. Research Assistant, Wesleyan University, Middletown, CT
08/1998 - 12/2001 Grad. Teaching Assistant, Wesleyan University, Middletown, CT
01/1997 - 05/1998 Merit Fellow, Indian Institute of Technology, Chennai, India

PROFESSIONAL OBJECTIVES AND INTERESTS

- Teaching general chemistry, organic chemistry and biochemistry courses.
- Drug design.
- Mechanistic studies of enzymes of medicinal interest.
- Organic Synthesis.
- Structure-activity studies of ligands bound to DNA/Proteins.

TEACHING EXPERIENCE

Boise State University
- CHEM431: Biochemistry I
- CHEM433: Biochemistry II
- CHEM432: Biochemistry Laboratory
- CHEM513: Advanced Enzymology
Skidmore College

- CH107H: Intensive General Chemistry Honors
- CH105: Chemical Principles I
- CH105L: Chemical Principles I Laboratory
- CH106: Chemical Principles II
- CH341L: Biochemistry-Macromolecular Structure and Function
- CH342: Biochemistry-Intermediary Metabolism
- SSP100: Drug Discovery-From Laboratory Bench to Pharmacy Stack

The Johns Hopkins University School of Medicine

- Teaching Assistant-Bioorganic Reaction Mechanisms

Wesleyan University

- Teaching Assistant for General Chemistry, Biochemistry and Organic Chemistry courses
- Chemistry Instructor, Health Professionals Partnership Initiative
- Instructor, Graduate Pedagogy Course

RESEARCH INTERESTS

Boise State University & Skidmore College
Principal Investigator: Dr. Rajesh Nagarajan

Bacterial Resistance Enzymes, Quorum Sensing, Biofilm Inhibitors

- Synthesis of acyl-ACP analogs for P. aeruginosa LasI AHL synthase.
- Mechanistic studies on acyl-ACP binding in LasI AHL synthase.
- Design and evaluation of biofilm inhibitors.

The Johns Hopkins University School of Medicine
Principal Investigator: Dr. James T. Stivers

Mechanistic Enzymology of Vaccinia Virus Topoisomerase

- Kinetic analysis of an inhibitor for vaccinia virus topoisomerase discovered through high-throughput ribonuclease assay.
- Investigation of phosphoryl interactions at the cleavage site in DNA phosphate backbone in the active site of topoisomerase (IB).
- Specificity studies of purine nucleotides in the major groove of DNA towards topoisomerase (IB).

Wesleyan University
Principal Investigator: Dr. Rex F. Pratt

Bacterial Resistance Enzymes

- Synthesis, thermodynamic and kinetic evaluation of pentacoordinate and tetrahedral transition states of phosphonate inhibitors of a class C β-lactamase.
- Investigation of the specificity towards peptide substrates of bacterial DD-transpeptidases (Streptomyces R61, Actinomadura R39, E.coli PBP2 and PBP5, S.aureus PBP2a).
Mechanistic analysis of an inhibitor designed on the basis of bacterial cell wall for Streptomyces R61 DD peptidase.

Indian Institute of Technology, Madras, India
Principal Investigator: Dr. A. K. Mishra

Fluorescent Spectroscopy Studies on Liposomes
- Partition coefficient studies of Avomine and Chlorpromazine on Dimyristoylphosphatidylcholine liposomes using fluorescence spectroscopy.

RESEARCH EXPERIENCE AND SKILLS

Protein Chemistry and Enzymology
- Enzyme Assays, Kinetics and Data analysis.
- Protein Expression and Purification.
- Thermodynamics of Thermal and Guanidine Denaturation of Enzymes and Enzyme-Inhibitor Complexes.

Nucleic Acid Biochemistry
- DNA Synthesis.
- Native and Denaturing Gel Electrophoresis.
- SDS-PAGE Electrophoresis.
- Agarose Gel Electrophoresis.
- Plasmid Supercoil Relaxation Assay.
- Radiolabeling of 3’ and 5’ ends in DNA.
- Enzyme Assays of Fluorescent Labeled DNA.

Bench Skills
- HPLC, UV, CD, Fluorescence Spectroscopy, NMR, MALDI.
- Equilibrium Dialysis of Enzyme-Inhibitor Complexes.
- Phosphocellulose and Desalting Chromatography.
- Stopped Flow Spectrometer and Rapid Quench Instrument.
- Phosphoroimager and Scintillation Counter.
- Micromax Plate Reader for High-Throughput Assays.
- Synthesis of Peptide Substrates.

Molecular Dynamics
- Experience in running and analyzing MM and MD Simulations on ligand-bound proteins.

Scientific Software
- Proficient in using software such as INSIGHT (molecular modeling), ULTRAFIT, DYNAFIT (Data Fitting), Image Quant and PRISM.

RESEARCH GRANTS

Internal Grants

Skidmore Student-Faculty Summer Collaborative Research Grant 02/2009
“Biochemical assay for P.aeruginosa LasI AHL Synthase”, $6,216
Role: Sole-PI (Funded)

Skidmore Student-Faculty Summer Collaborative Research Grant 02/2008
“Synthesis of a 4-oxo Substrate Analog for Bacterial Quorum Sensing LasI AHL Synthase”, $6,154
Role: Sole-PI (Funded)

Skidmore Student-Faculty Summer Collaborative Research Grant 02/2008
“Synthesis of a 3-hydroxydodecanoyl cysteamine Substrate for *P. aeruginosa* LasI AHL Synthase”, $3,145
Role: Sole-PI (Funded)

Skidmore Student-Faculty Summer Collaborative Research Grant 02/2007
“Synthesis of a Bacterial Quorum Sensing Autoinducer Analog”, $5,950
Role: Sole-PI (Funded)

External Grants

NSF: Major Research Instrumentation 01/2009
“Acquisition of a Libra 120 transmission electron microscope for research enhancement at Skidmore College”, $664,737
Role: Co-PI (Funded)

Research Corporation 11/2007
“Design, Synthesis and Evaluation of acyl-ACP Substrate Analogs for *P. aeruginosa* LasI AHL Synthase”, $44,992
Role: Sole-PI (Not Funded)

The Camille and Henry Dreyfus Foundation 05/2006
“Design, Synthesis and Evaluation of Quorum Sensing Inhibitors”, $30,000
Role: Sole-PI (Not Funded)

Mountain States Tumor & Medical Research Institute 03/2011
“Biochemical Assay for LasI AHL Synthase”, $7,241
Role: Sole-PI (Funded)

PEER REVIEWED PUBLICATIONS

PRESENTATIONS

Presentations at conference/workshop

(Skidmore College: Principal Investigator)

* Undergraduate Student co-authors

(Johns Hopkins University: Postdoctoral Fellow)

(Wesleyan University: Graduate Student)

- Rajesh Nagarajan and Rex F. Pratt, Esther B. and Bingham J. Humphrey Memorial Symposium, “A Comparative Thermodynamic Study of Phosphonates and Boronates as class C β-lactamase Inhibitors”, University of Vermont, Sep 2000.

AWARDS AND HONORS

2003 Peterson Fellowship, Wesleyan University, Middletown, CT
2001 Max Tishler Award, Wesleyan University, Middletown, CT
1996-1998 Merit Scholarship, Indian Institute of Technology, Chennai, India
1996 Edinburgh Studentship, Madras Christian College, Chennai, India
1996 T.T. Thomas Prize, Madras Christian College, Chennai, India
1995 Edinburgh Scholarship, Madras Christian College, Chennai, India
1995 Hoare Prize, Madras Christian College, Chennai, India

COMMITTEE EXPERIENCE

- Porter Scholarship Committee, Skidmore College, 2008-present.
- Analytical Chemistry Search Committee, Skidmore College, 2008.
- Skidmore College Honors Council, 2007-present.
- NMR Committee, Skidmore College, 2007-present.
- International Affairs Committee, Skidmore College, 2007-present.
- Academic Safety Officer search committee, Skidmore College, 2007.
- Search Committee for Chemistry Teaching Associate, Skidmore College, 2007.
- Educational Policy Committee (EPC), Wesleyan University, 2001-2002.
- Graduate Student Judiciary Board, Wesleyan University, 2002-2003.

WORKSHOPS ATTENDED

Skidmore College

- IRC workshop on ‘Internet 2’ - 03/2008
- Information Technology workshop: Dreamweaver - 02/2008
- Teaching with technology: Multimedia - 11/2007
- Pedagogy workshop on video conferencing - 10/2007
- Teaching film in courses - 05/2007
- First year seminar development workshop - 05/2007
- Thinking about media: new literacy and classroom - 02/2007
- Social class and its pedagogical implications in the classroom - 09/2006
External Workshops

- CRLT performance on “Conflict in the classroom” at Union College, 03/2008
- Council on Undergraduate Research Meeting, Alexandria, VA, 03/2007

PROFESSIONAL MEMBERSHIP

2002- American Chemical Society (ACS)
2006- Council on Undergraduate Research (CUR)
2011- American Association for the Advancement of Science (AAAS)
2011- Idaho Academy of Science (IAS)
2011- Mountain States Tumor & Medical Research Institute (MSTMRI)

SCHOLARLY ACTIVITIES

- Reviewed manuscripts for ‘Biochemistry’ journal
- Invited to review grant proposals for NSF-MRI program, 08/2009
- Presented a seminar on ‘Career Opportunities in Science’, Skidmore College, 02/2007
- Mentored research projects for 8 undergraduate students (Skidmore College)
- Research Mentor for 9 undergraduate students and 2 postdoctoral fellows at BSU

INVITED TALKS

- Johns Hopkins University School of Medicine, Baltimore, MD, May 2003
- University of Illinois, Urbana Champaign, IL, May 2003
- Illinois Institute of Technology, Chicago, IL, Nov 2005
- Skidmore College, Saratoga Springs, NY, Dec 2005
- Wesleyan University, Middletown, CT, Nov 2006
- University of Wisconsin, Whitewater, WI, Dec 2008
- University of San Francisco, San Francisco, CA, Dec 2008
- University of Colorado, Denver, CO, Jan 2009
- Western Washington University, Bellingham, WA, Feb 2009
- The College of New Jersey, Ewing, NJ, Dec 2009
- Eastern Illinois University, Charleston, IL, Jan 2010
- Eastern Michigan University, Ypsilanti, MI, Feb 2010
- Western Carolina University, Cullowhee, NC, Mar 2010
- University of Illinois, Urbana Champaign, IL, Apr 2010
- University of Michigan, Ann Arbor, MI, Apr 2010
- Boise State University, Boise, ID, Apr 2010
Curriculum Vitae
Troy Townsend Rohn

Date and Place of Birth: June 6, 1967; San Jose, CA

Academic Training:
B.S. (Physiology) University of California at Davis, 1990
Ph.D. (Pharmacology) University of Washington, 1994

Professional Experience:

1990-1995: Predoctoral fellow in the Department of Pharmacology, University of Washington.

1997-1998 Postdoctoral fellow; Department of Veterinary Molecular Biology, Montana State University.

1998-2000 Postdoctoral fellow, Department of Neurology, Institute for Brain Aging and Dementia, UC Irvine

2000-2005 Assistant Professor, Department of Biology, Boise State University, Boise, ID

2005-2010 Associate Professor, Department of Biological Sciences, Boise State University, Boise, ID

2010- Professor, Department of Biological Sciences, Boise State University, Boise, ID

List of Undergraduates Mentored in Lab:
1. William Nesse (listed as co-author on published manuscript)
2. Stephen Kessinger (listed as co-author on published manuscript)
3. Carly Merkel
4. Kristen Leenhouts (listed as co-author on published manuscript)
5. Young Eun Kim (listed as co-author on published manuscript)
6. Matthew Kai
7. Sorcha Cusack (listed as co-author on published manuscript)
8. Kwang-Ho Ha (listed as co-author on published manuscript)
9. Elizabeth Figueredo
10. Serena Wong (listed as co-author on published manuscript)
11. Cody Eaton (listed as co-author on published manuscript)
12. Shaniece Craft
13. Stephen Kessinger (listed as co-author on published manuscript)
14. Jordan Harris
15. Guy Warhurst
16. Lindsey Catlin

List of Graduate Students Mentored in Lab:

1. Michael Davis (listed as co-author on published manuscript)
2. Jodie Newman (listed as co-author on published manuscript)
3. Peter Mouser (listed as co-author on published manuscript)
4. Brain Dufty (listed as co-author on published manuscript)
5. Veera Vyas (listed as co-author on published manuscript)
6. Deby Kumasaka (listed as co-author on published manuscript)
7. Polina Kokoulina (listed as co-author on published manuscript)

I have also served on numerous Thesis committees for students in other labs in our biology department

Formal Teaching Activities Past three years.

1) Instructor for Biol. 442/542 (Molecular Neurobiology) at Boise State University. This is a molecular neurobiology course for under- and graduate-students. Responsible for teaching all lectures, exam preparations, and grading. This is an intensive upper division course that most students find very challenging. The one aspect of this course that I try to do most is keep current with the most recent advancements in particular topics.

2) Instructor for Biol. 431/531 (Pharmacology) at Boise State University. This is a pharmacology course for both graduate and undergraduate students. All areas of pharmacology are covered. This is an interesting course as far as the students go. I typically have a wide-range of students enrolled in this course with various majors including pre-nursing, premedical, pre-pharmacy, pre-dental, biology etc. I try to teach this course at the level first year medical students. It is an extremely challenging course in terms of content and pace.

3) Instructor for Biol. 100 (Concepts of Biology) at Boise State University. This is a non-majors course covering all aspects of biology. A two-hour weekly lab to enforce concepts taught in class was also given. I am responsible for all aspects of this class. This is a service course for our department and typically the class size is large (greater than 200 students) and encompasses students who are not science majors.

4) Instructor for Biol. 100 (Electronic Course) at Boise State University. This is the online version the same course that I teach face-to-face. I was one of the original faculty members involved with the pilot blackboard program and was the first faculty member to develop and teach an online course for our department.

Major Awards for Teaching and Research:
1) 2005 Faculty Recognition Nomination for best faculty by ASBSU
2) 2006 Faculty Recognition Nomination for best faculty by ASBSU
3) 2007 Nominee for Foundation Scholar Teaching Award
4) 2008 Finalist Foundation Scholar Teaching Award
5) 2008 Nominated for Health-Hero in Teaching Idaho Business Review
6) 2008 College of Arts and Sciences Distinguished Award for Teaching
7) 2008 College of Arts and Sciences Distinguished Award for Research
8) 2009 Winner Foundation Scholar Teaching Award
9) 2010 Nominated for Idaho Professor of the year (did not win)
10) 2011 Nominated for Idaho Professor of the year (under review).

Major Research Interests:
Our laboratory is interested in the role that certain proteases play in promoting the pathology associated with different neurodegenerative diseases. For example, in Alzheimer’s disease, our lab has investigated the role that caspases may play in promoting neurofibrillary tangle formation. In this regard, we hypothesize that the caspase-cleavage of the microtubule-associated protein, tau, may be the link between senile plaques and tangles observed in this disease. We have developed a novel transgenic mouse model of AD that overexpresses the anti-apoptotic protein, Bcl-2 and have demonstrated that such overexpression prevents plaque and tangle formation and improves cognition. More recently, we are beginning to assess the ability of caspase inhibitors in preventing Alzheimer’s disease pathology in an aggressive transgenic mouse model of Alzheimer’s.

Current and Pending Funding:

1) Oxford, Julie (PI), Rohn, Troy (Co-I) Funded
 NASA EPSCoR 9/1/2010 to 8/31/2013
 Molecular Mechanisms of Cellular Mechanoreception in Bone
 2.2 month salary support and O.E., $7,200 per year

2) Rohn, Troy (PI) Funded
 KO Alzheimer’s Disease Foundation $28,000
 To support undergraduate research fellows in my lab

3) Rohn, Troy (PI) Pending
 NIH R21 4/1/2011 to 3/31/13 $167,217
 A multi-organsimal approach to Alzheimer’s disease drug discovery

Research projects funded, but have expired:

1) Rohn, Troy (PI) Funded Effort 20%
American Health Assistance Foundation (AHAF) $131,140 01/04/2007-03/31/2010
Caspase-cleavage of tau in Alzheimer’s disease
This was a three-year pilot study to examine the role of caspases as an interconnecting step between plaques and tangles in AD. The major goal of this project is to develop a novel transgenic mouse model of AD that over-expresses the antiapoptotic protein, Bcl-2.

2) NIH/NCRR INBRE COPI’s Laskowski, M. and Oxford, J.
Funded

Rohn, Troy (Magnate Project Investigator P.I.)
07/01/2004-06/30/09 50%

$375,000
Involvement of astrocyte caspase activation and CD40/CD40L signaling interactions in Alzheimer’s Disease
The major goals of this project are to develop specific antibodies that will recognize the caspase-cleavage products of GFAP, an astrocytic-specific protein. In addition, this proposal will examine if caspase activation occurs in reactive astrocytes of the AD brain and whether such activation is associated with specific markers of inflammation such as CD40/CD40L.

3) Development of Site-Directed Caspase-Cleavage Antibodies (R03); submitted to National Institute for Aging, July 2000. $50,000 for a one-year period was requested. Funded May 2001 - 2003 for $56,287

4) The Role of Caspase-8 in Alzheimer’s Disease (AREA R15); submitted to National Institute for Health, September 15, 2000. $100,000 over a 3 year period was requested. Funded July 2001-2004, $122,523

Memberships and other Activities:
2000-2007 Board Member, Idaho Chapter of Alzheimer’s Association
2005-2007 Grant Reviewer for Alzheimer’s Association
2006-Member of the Snake River Association for Neuroscience
2007- Member of Society for Neuroscience
2008- Member of ISTAART, International Society to Advance Alzheimer Research and Treatment
2009- Executive Editor, International Journal of Physiology, Pathophysiology and Pharmacology
2010- Executive Editor, International Journal of Clinical Experimental Pathology

Publications (H-index: 23, as calculated by Google Scholar)

Abstracts:

International Conference on Critical Aspects of Free Radicals in Chemistry, Biochemistry and Medicine, February 14-17, 1993, Vienna Austria.

Curriculum Vitae

MARCELO D. SERPE

Department of Biological Sciences, Boise State University
1910 University Drive, Boise, ID 83725-1515
E-mail: MSerde@boisestate.edu
Phone: (208) 426-3687

Present Position:
Professor

Academic Degrees, Postdoctoral Work, and Previous Positions:
Associate Professor, Boise State University, 2002-2010
Assistant Professor, Boise State University, 1998-2002
Assistant Professor, Cayey University College, University of Puerto Rico, 1995-98
Postdoctoral research associate, Plant Cell Biochemistry, University of California, Riverside, 1991-95.
Ph.D., Plant Physiology, University of California, Davis, 1991.
M.S., Plant Science, California State University, Fresno, 1983.
Ingeniero Agronomo, Facultad de Agronomia, Universidad de Buenos Aires, 1981.

Research Experience:
Assistant/Associate Professor, Department of Biology, Boise State University. Research on the regulation of plant growth by environmental and biochemical factors. August 98 to present
Research associate, Department of Botany and Plant Sciences, U.C. Riverside. Analysis of the function and biochemical structure of certain proteoglycans, arabinogalactan-proteins, present on the surface of plant cells. March 91 - July 95
Research assistant, Plant Biology Graduate Group, U.C. Davis. Performed research in the area of regulation of leaf growth under water deficits and during ontogeny. October 85 - December 90.
Laboratory technician, Zaiger's Nursery, Modesto, CA. Responsible for a tissue-culture lab in a privately sponsored breeding program designed to improve horticultural species. April 84 - May 85.
Research assistant, U.S.D.A. Horticultural Research Laboratory, Fresno, CA. In vitro propagation of early varieties of Prunus and seedless Vitis, May 82 - April 84.

Teaching Experience:
General Biology (lecture and laboratory) (Boise State University)
Plants and Society (lecture and laboratory) (Boise State University)
Molecular Biology of Plant Development (lecture and laboratory) (Boise State University)
Plant Physiology (lecture and laboratory) (Boise State University)
Plant Anatomy and Microtechnique (lecture and laboratory) (Boise State University)
Transgenic Plants (lecture and laboratory) (Boise State University)
Control of Seed Germination (graduate seminar) (Boise State University)
General Botany (lecture and laboratory) (Boise State University)
General Botany (lecture and laboratory) (Cayey University College)
Publications:

Emershad RL, Ramming DW, Serpe MD (1989). In ovulo embryo development and plant formation from stenospermic genotypes of Vitis vinifera. American Journal of Botany 76: 397-402

*Graduate student in my lab, ** undergraduate student in my lab

Presentations during the past five years
Donahue J, Perez M, Serpe MD (2009) Primary and Secondary Dormancy in Lomatium dissectum (Apiaceae) seeds. Undergraduate Research Symposium, Boise State University
Osgood T, Serpe MD (2009) Influence of a moss-dominated biological soil crust and litter on Bromus tectorum establishment under natural conditions. Undergraduate Research Symposium, Boise State University
Serpe MD (2009) Factors affecting Lomatium dissectum seed germination and seedling establishment. Annual meeting Great Basin Native Plant Selection and Increase Project
Serpe MD (2008) Germination and seed water status of native and exotic grasses on biological soil crusts from the Great Basin of North America. Seminar presented at the Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi, China
Zimmerman S, Rosentreter R, Serpe MD (2007) Germination and seed water status of native and exotic grasses on biological soil crusts. AAAS Pacific Division

Grants during the past five years:
USDA Forest Service ($9,400) Diversity of mycorrhizal species that colonize *Artemisia tridentata* in southwestern Idaho (Jan 10-Dec 12)
USDA-ARS ($28,596) Adaptation of Lesser-Known Wine Grape Cultivars to Climatic Features of the Snake River Valley American Viticultural Area (Oct 10-Jul 12)
Bureau of Land Management ($39,946): Influence of litter and a moss-dominated biological soil crust on *Bromus tectorum* establishment under natural environmental conditions (May 08-Oct 12)
Forest Service, U.S.D.A. ($19,875) Development of procedures to break dormancy in *Lomatium*
 dissectum seeds (Feb 07- Sep 10)
Forest Service, United State Department of Agriculture ($15,350) Requirements for dormancy break and germination in Lomatium dissectum seeds (Aug 06-Aug 09)
USDA-ARS ($14,000) Quantification of abscisic acid in leaves of grape plants exposed to different irrigation treatments (Oct 2007-Jul 2009)

Equipment grants:

Professional Societies:
American Society of Plant Biologists
Botanical Society of America

Major Professor for the following students:
Lynell Deines (graduated in 2006)
Melissa Scholten (graduated 2011)
Keith Carter (current)
Bill Davidson (current)
Jacob Cragin (current)

Member in the thesis committee of the following students:
Joseph Rausch (graduated in 2003)
Cindy R. Dalzell (graduated in 2004)
Stuart Murray (graduated in 2007)
Quentin Tuckett (graduated in 2007)
Rylene LaRee Moore
John Wilford
Danielle Clay
Morgan Peterson
Teresa Tarifa De Yensen
CURRICULUM VITAE

Juliette Kay Tinker

Date of Preparation: 6/1/11

I. Personal Data

Home address: Professional address:
2662 E. Brierfield Dr. Department of Biological Sciences
Eagle, ID 83616 Boise State University
(208) 319-1097 1910 University Dr.
Boise, ID 83725 Boise, ID 83725
(208) 426-5472 juliettetinker@boisestate.edu

II. Education

B.A. in Biology and English, May 1994
Washington University, St. Louis, MO.

Ph.D. in Microbiology, December 2000
The University of Iowa, Iowa City, IA.
Thesis: Regulation of Type I Fimbrial Production In Salmonella typhimurium: The Characterization and Genetic Analysis of fimY, fimU and fimW.
Dr. Steven Clegg, Thesis Advisor

Post-doctoral fellowship, September 2000 –September 2004
Department of Microbiology, The University of Colorado Health Sciences Center, Denver, CO.
Dr. Randall Holmes, Principal Investigator

III. Current Position

Assistant Professor, Department of Biological Sciences, Boise State University, Boise, ID. January 2005- present.

IV. Areas of Research Interest

Vaccine development and pathogenic bacteriology

Current Research
1) The development of non-toxic Vibrio cholerae and Escherichia coli enterotoxins as adjuvants for mucosal vaccines.
2) Characterization of bacterial enterotoxin intracellular host trafficking.
3) Identification and characterization of novel bacterial enterotoxins from Gram negative pathogens.
4) Characterization of the antibacterial activity of zinc nanoparticles.
V. Professional Affiliations
1997-present American Society for Microbiology
2005-2007 Sigma Xi Scientific Research Society
2006-present Mountain States Tumor and Medical Research Institute
2007-present American Association for the Advancement of Science
2008-present Idaho Academy of Sciences
2009-present Phi Kappa Phi Honor Society

VI. Teaching Activities
Washington University Teaching Assistant
1994 Developmental Biology, laboratory.

The University of Iowa Teaching Assistant/Tutor
1995 Molecular Biology for High School Students, lecture/laboratory.
1996 Health Sciences Microbiology for Dental and Pharmacy Students, laboratory.
1997 Pathogenic Bacteriology, laboratory.
1998 Principles of Infectious Diseases for Medical Students, laboratory.

The University of Colorado Post-doctoral Fellow
2001 Topics in Microbial Pathogenesis, 3 lectures.
2002 Medical Microbiology, 3 laboratories.

Boise State University Assistant Professor
2005 Pathogenic Bacteriology lecture/laboratory (4 credits).
 Introductory Microbiology lecture/laboratory (4 credits).
2006 Introductory Microbiology lecture/laboratory (4 credits).
 Infection and Immunity seminar (2 credits).
2007 Pathogenic Bacteriology lecture/laboratory (4 credits).
 Ecology of Infectious Disease seminar (2 credits).
 Research in the Biological Sciences (1 credit)
2008 Vaccines and Vaccine Development lecture (3 credits).
 Introductory Microbiology lecture/laboratory (4 credits).
 Advanced Topics in Molecular Techniques seminar (2 credits).
2009 Pathogenic Bacteriology lecture/laboratory (4 credits)
 Vaccines and Vaccine Development lecture (3 credits)
2010 Introductory Microbiology lecture/laboratory (4 credits)
 Advanced Immunology Laboratory (2 credits)
 Cancer Vaccines seminar (1 credit)
2011 Pathogenic Bacteriology lecture/laboratory (4 credits)
 Microbial Toxins seminar (1 credit)
 Vaccinology (3 credits; service-learning course)

Other
2002-2005 Instructor for Westernaires, a non-profit horse riding organization for children.
VII. Supervising Students in Research

The University of Iowa
- 1998 Co-teach summer Molecular Biology course to High School students.
- 1998-2000 Train undergraduates enrolled in summer research projects.

The University of Colorado Health Sciences Center
- 2000-2004 Train undergraduates and graduate students in laboratory techniques.
- 2003 Train and mentor medical student with summer research fellowship from The University of Buffalo, NY.

Boise State University
- 2005 graduate students, major advisor: Chadwick Davis.
 - undergraduate students: Tabitha Sturgis, Liz Villaneuva, Felicia Martinez, Alonzo Rivas, Blake McDonald, Juliann Lucero, Kimberly Stevenson.
- 2006 graduate students, major advisor: Chadwick Davis,
 - graduate students, committee member: Alma Hodric, Holly Schultz, Brian Dufty.
 - undergraduate students: Tabitha Sturgis, Liz Villaneuva, Alonzo Rivas, Jason Bell, Felicia Martinez, Blake McDonald, Sara Murray, Jason Bell.
- 2007 graduate students, major advisor: Chadwick Davis.
 - graduate students, committee member: Alma Hodric, Brian Dufty, Ashley Masterson, Veera Vaas, Cory Hanley.
 - undergraduate students: Liz Villaneuva, Brady Callahan, Rachel Nielsen, Britni Arlian, Sara Wilson, Rachael Shin, Justin Peer.
- 2008 graduate students, major advisor: Chadwick Davis.
 - graduate students, committee member: Ashley Masterson, Cory Hanley, Polina Kokouлина.
 - undergraduate students: Britni Arlian, Sara Wilson, Brady Callahan, Christina Hayes, Caitlin Otto, Rachael Nielsen, Herbie Pollard.
- 2009 post-doctoral fellow: Jenny Yan
 - research technician: Britni Arlian
 - graduate students, major advisor: Lavanya Vempati
 - graduate students, committee member: Ashley Masterson, Polina Kokouлина, Cory Hanley, Emily Schmidt.
 - undergraduate students: Britni Arlian, Caitlin Otto, Mary Zettick, Sheenah Bryant, Herbie Pollard, Jayashree Sanjeeverman, Brady Callahan, Brad Morris.
- 2010 post-doctoral fellow: Jenny Yan
 - research technician: Britni Arlian
 - graduate students, major advisor: Lavanya Vempati
graduate students, committee member: Polina Kokoulina, Emily Schmidt, Ashley McCartney.

undergraduate students: Herbie Pollard, Brad Morris, Casey Denton, Benjamin Tverdy, Sheenah Bryant, Marita King, Kimberly Empey, Chris Barbey, Nathan Zhart.

high school students: Kelly Rekeire

2011 post-doctoral fellow: Jenny Yan

research technician: Britni Arlian

graduate students, major advisor: Lavanya Vempati

graduate students, committee member: Panagiota Louka, Christopher Porterfield, Ashley McCartney.

undergraduate students: Brad Morris, Sheenah Bryant, Casey Denton, George Hafez, Kelly Rekeire.

VIII. Funding and Awards

1997-1999 NIH Parasitism Training Grant Trainee (#5T32AI07511).

2000 American Society for Microbiology student travel grant award, $500.

2006 Boise State University Faculty Research grant. P.I., $5000.

2006 Boise State University Graduate Student Research grant (Chadwick Davis) $500.

2006 Boise State University COAS Travel grant. P.I., $500.

2007 Merck AAAS Undergraduate Science Research Program grant. Co-P.I. $60,000.

2007 Boise State University Faculty Research Associates Program grant. P.I. $5310.

2007 Mountain States Tumor Medical Research Institute Small Project Grant. Trafficking of fluorescent bacterial enterotoxins. P.I., $5000.

2008 WWAMI small pilot projects grant. The characterization of enterotoxin chimeras as Staphylococcal mucosal vaccines $10,000.

2009 Mountain States Tumor Medical Research Institute Small Project Grant. Novel AB5 type toxins from gram negative pathogens. P.I. $7500.

2011 Boise State University Graduate Student Research grant (Lavanya Vempati) $500.

2011 Mountain States Tumor Medical Research Institute Small Project Grant. Characterization of ArtAB from Salmonella enterica Typhimurium. P.I. $7500.

Pending

2011 Northwest Regional Center of Excellence for Biodefense and Emerging Infectious Disease Developmental Project grant. LcrV-enterotoxin A₂/B chimeras as mucosal Yersinia pestis vaccines. P.I. $344,723 4/30/11

IX. Publications

Submitted

In preparation

(*corresponding author).

X. Selected Abstracts

Construction of enterotoxin fusions for use as potential vaccines against methicillin-resistant Staphylococcus aureus. Arlian, B., Tinker,
Development of enterotoxin fusions for use as potential mucosal vaccines.

XI. Oral presentations and symposia
Bacterial enterotoxins as vaccines. Tinker, J.K. Albertson College, Department of Biology, invited by Dr. Ann Koga. May 9, 2007.
Vaccines: current recommendations and the autism debate. Tinker, J.K.
The use of bacterial enterotoxins as potential mucosal vaccines. Tinker, J.K.
Vaccine safety: busting some myths. Tinker, J.K. St. Luke’s Hospital Infection
Control Week. October 21, 2009.
Construction and characterization of an IsdA-cholera toxin chimera as a
potential Staphylococcal mucosal vaccine. Arlian, B.A and Tinker, J.K.
American Society for Microbiology Intermountain branch annual meeting.
Cholera toxin A2/B chimeras as potential Staphylococcal vaccines. Tinker, J.K.
AAAS Pacific Branch annual meeting. Ashland, OR. June 12, 2010.
Cholera toxin A2/B chimeras as mucosal Staphylococcal vaccines. Tinker, J.K.
University of Washington ITHS Pilot Awards Symposium. Seattle, WA.
Dec 17, 2010.
Cholera toxin A2/B chimeras as potential mucosal vaccines. Tinker, J.K.
American Society for Microbiology Annual Intermountain Branch
Meeting. Ogden, UT. April 9, 2011

XII. University, professional and community service

University
2005-present Member, Biology Department Reserch Committee
2007-present Judge, College of Arts and Sciences Wallice G. Kay writing
competition
2008-2010 Member, University Academic Grievance Committee
2008-2011 Member, University Foundation Scholars, Research and
Creative Committee
2008-2010 Member, Institutional Biosafety Committee
2010-present Chair, Institutional Biosafety Committee

Professional
2006 Journal reviewer, Idaho Academy of Sciences
2007 Chapter reviewer, Microbiology (Cowen, Talaro), McGraw Hill
2008 Symposium co-chair, AAAS Pacific Division, Boise, ID
2009-2010 Academic Advisory Board Member, Annual Editions
Microbiology, McGraw Hill
2009-present Journal reviewer, Protein Expression and Purification
2011 ASM Intermountain Branch board member

Community
2007 Boise State University Oscher Institute lecture; “Vaccine
Safety”
2008-present lecturer on vaccine safety for St. Luke’s hospital annual Infection Prevention Week
2009-present Idaho Immunization Coalition member
2010-present Central Health District Immunization Advisory Board
2009 Vaccines and Vaccine Development service-learning course
 with the Idaho Immunization Program
2011 Vaccinology service-learning course
 with the Central District Immunization Board and the Idaho Immunization Program
DON L. WARNER
Department of Chemistry, Boise State University
1910 University Drive Boise, ID 83725-1520
(208) 426-3030 dwarn@boisestate.edu

PROFESSIONAL EXPERIENCE
Boise State University, 2008-present: Associate Professor of Chemistry
Boise State University, 2002-2008: Assistant Professor of Chemistry
Lowell Bennion Community Service Center, University of Utah, 1995-1997: Volunteer in Service to America

EDUCATION
University of Michigan, Ann Arbor, MI
Chemistry Ph.D. 2002
University of Wisconsin, Madison, WI
Chemistry M.S. 1998
University of Utah, Salt Lake City, UT
Chemistry B.S. 1995

HONORS AND AWARDS
Roche Award for Excellence in Organic Chemistry, Hoffmann-La Roche (2001)
Bristol-Myers Squibb Graduate Fellowship (2001)
Associated Students of Boise State Outstanding Faculty Member, Arts and Sciences (2003)
Associated Students of Boise State Outstanding Faculty Member, Arts and Sciences (2003)
Boise State Faculty Research Associate (2004)
Boise State Top Ten Scholars Honored Faculty Member—recognized by 3 of the 10 students (2007)
Boise State College of Arts and Sciences Award for Distinguished Teaching—finalist (2007)
Boise State Provost’s Excellence in Advising Award, College of Arts and Sciences (2007)
American Chemical Society, Division of Organic Chemistry Travel Award (2008)
Boise State Top Ten Scholars Honored Faculty Member—recognized by 1 of the 10 students (2009)
Boise State Top Ten Scholars Honored Faculty Member—recognized by 1 of the 10 students (2010)
Associated Students of Boise State Outstanding Faculty Member, Arts and Sciences (2010)
Boise State Top Ten Scholars Honored Faculty Member—recognized by 1 of the 10 students (2011)

FUNDING
"REU Site: Summer Research in Chemistry at Boise State University for First Year Undergraduates"; National Science Foundation; 09/10-08/13; Role: PI.
"MRI: Acquisition of an LC-MS for Multidisciplinary Research and Education"; National Science Foundation; 05/09-04/12; role: co-PI.
"Evaluation of DNA Cross-Linking by Aziridinomitosenes"(renewal); National Institutes of Health; 03/09-02/12; role: PI.
"Evaluation of DNA Cross-Linking by Aziridinomitosenes" (Competitive Administrative Supplement); National Institutes of Health; 07/09-12/10; role: PI.
"Investigations into the formation of DNA-protein cross-links by synthetic aziridinomitosenes"; Mountain States Tumor and Medical Research Institute; 06/08-09/09; role: PI.
"Going Green: Environmental, Economic, Efficient Organic Chemistry Lab Curriculum"; Idaho State Board of Education; 07/08-06/09; role: Co-PI.
"Acquisition of GC/MS and FT-IR Instrumentation to assist with the Integration of Research-Based Learning throughout Boise State University’s Chemistry Curriculum"; National Science Foundation; 03/2008-02/2011; role: PI.
"Acquisition of a 500-MHz Nuclear Magnetic Resonance Spectrometer at Boise State University"; National Science Foundation; 04/2007-03/2010; role: Co-PI and primary author (grant guidelines required Chemistry Department Chair to serve as PI).
"Evaluation of DNA Cross-Linking by Aziridinomitosenes"; National Institutes of Health; 03/05-02/09; role: PI.
"Biological Computational Chemistry: Development of Projects and Tutorials"; Boise State COAS Mini-Development Grant to Aid Instruction; 10/2007-05/2008; role: PI.
"Investigation of Alkyl Migration from Silicon to Carbon for the Stereocontrolled Synthesis of Carbon-Carbon Bonds"; Research Corporation; 06/01/2004-05/31/2008; role: PI.
"1,5-Dipoles from Nonstabilized Azomethine Ylides: Application to the Synthesis of 2-Pyrrolines"; Petroleum Research Fund; 07/01/2004-09/01/2006; role: PI.
"Synthesis of Doxorubicin C14 Benzyl Ethers and Evaluation as CR Substrates and Topoisomerase II Inhibitors"; Mountain States Tumor and Medical Research Institute; 06/15/04-09/01/2006; role: PI.
"Synthesis and Alkylating Properties of Aziridinomitosenes B"; Mountain States Tumor and Medical Research Institute; 5/03-4/04; role: PI.
"Stereoselective Generation of Chiral Silanes Using a 1,2 Migration Sequence"; Boise State University Faculty Research Grant; 7/03-6/04; role: PI.
"Synthesis and Biological Properties of Aziridinomitosenes"; NSF EPSCoR Start-up Augmentation Funding; 08/02-01/03; role: PI.

SYNERGISTIC ACTIVITIES AND SERVICE

Professional Organizations/Conferences/Committees

Proposal Reviewer/Panelist, National Science Foundation
Councilor, American Chemical Society Snake River Local Section
Program Director, 2012 ACS Northwest Regional Meeting (NORM)
Manuscript reviewer for the Journal of Chemical Education
Annotator for Project Chemlab, of the Journal of Chemical Education
Textbook reviewer, McGraw Hill and W. W. Norton

University

BSU Top Ten Scholars Selection Committee (Spring 2008 to present)
BSU Core Reform Task Force Member (November 2008 to present)
BSU Core Curriculum Committee Chair (August 2007 to Spring 2010)
Boise State Teaching Scholars Program—Undergraduate Research (September 2007 to May 2008)
BSU Core Curriculum Committee Member (September 2006 to May 2007)
BSU Service Learning Advisory Board Member (September 2003 to present)
BSU Wallace G. Kay - Phi Kappa Phi annual student writing contest, Judge (Spring 2004 and Spring 2005)
Service-Learning Teaching and Research Grants, Reviewer (Fall 2003 to Spring 2004)

College

College of Arts and Sciences Top Ten Scholars Selection Committee (Spring 2008)
College of Arts and Sciences (COAS) Curriculum Committee Member (September 2006 to present)
COAS Mini-Development Grant Selection Committee (Fall 2005)
Natural Science/Physical Science Endorsement Committee (Fall 2003)
Electronic Blackboard Committee (Fall 2003)

Department

Tenure and Promotion, (September 2008 to present)
Graduate Studies (September 2008 to present)
Curriculum Committee, Chair (September 2006 to present)
Scholarship and Awards Committee, Chair (Spring 2003 to May 2008)
BSU ACS Student Affiliates, Advisor (Spring 2003 to May 2006)
Chemistry Dept. Newsletter, Editor (Fall 2004 to May 2006)
Faculty and Instructor Search Committees, Chair (3) and Member (6) (Fall 2002 to present)
Advisor, 20 Chemistry Majors (Fall 2002 to present)
AFFILIATIONS
American Association for the Advancement of Science
American Chemical Society (Division of Organic Chemistry and Division of Chemical Education)
Council on Undergraduate Research
Idaho IDEA Network of Biomedical Research Excellence (Idaho INBRE)
Mountain States Tumor and Medical Research Institute

JOURNAL PUBLICATIONS (Undergraduate students mentored by D. L. Warner indicated with *)

INVITED TALKS

6. "Synthesis and DNA Binding Properties of Aziridinomitosenes" Warner, Don L.; Haga, Matt K.; McKay, Mandalyn; Montgomery, Jamie; Olson, Richard D.; Penner, Megan; Radabaugh, Andrea S.; Rink, Stacia M. 88th Pacific Division Regional Meeting of the American Association for the Advancement of Science, Boise, ID, United States, June 17-21 (2007).

POSTERS AND PRESENTATIONS

8. "Synthesis and study of synthetic aziridinomitosenes that form DNA adducts" Warner, Don L.; Fox, Katherine M.; Montgomery, Jamie M.; McInturff, Emma L.; Summers, Mikenna; Knox, Nichole D.;
Hildenbrand, Jennifer; Rink, Stacia M. American Chemical Society National Meeting; San Francisco, CA; March, 2010.

STUDENT POSTER PRESENTATIONS

17. "Importance Of Stereoselectivity In The Synthesis Of An Aziridinomitosene Analog" Andrea Radabaugh, Kate McDonough, Anna Block, and Don L. Warner; 2nd Annual Boise State Undergraduate Research Conference; April, 2005.

24. "Synthesis of a 6-methyl substituted aziridinomitosene that arrests division in HL-60 cancer cells" Montgomery, Jamie; Warner, Don L.; Rink, Stacia M.; Radabaugh, Andrea S.; Penner, Megan; Haga, Matt K.; Abstracts, 62nd Northwest Regional Meeting of the American Chemical Society, Boise, ID, United States, June 17-21 (2007).

27. "In Vitro Formation Of DNA-Protein Cross-Links By An Unsubstituted, Synthetic Aziridinomitosene"
Katherine M. McHail, Emma L. McInturff, Jamie M. Montgomery, Stacia M. Rink, and Don L. Warner; 50th Annual Meeting of the Idaho Academy of Sciences; Nampa, ID; March, 2008.

28. "Initial investigations into the synthesis and electrochemical polymerization of thiophene-based molecular imprinted polymers for use as benzene sensor electrodes" Lisa Young, Matt Haga, and Don Warner; 50th Annual Meeting of the Idaho Academy of Sciences; Nampa, ID; March, 2008.

29. "In Vitro Formation Of DNA-Protein Cross-Links By An Unsubstituted, Synthetic Aziridinomitosene"
Katherine M. McHail, Emma L. McInturff, Jamie M. Montgomery, Stacia M. Rink, and Don L. Warner; 5th Annual Boise State Undergraduate Research Conference; April, 2008.

30. "Initial investigations into the synthesis and electrochemical polymerization of thiophene-based molecular imprinted polymers for use as benzene sensor electrodes" Lisa Young, Matt Haga, and Don Warner; 5th Annual Boise State Undergraduate Research Conference; April, 2008.

32. "Studies Investigating the Mechanism of DNA/Protein Cross-Linking by Synthetic Aziridinomitosenes"
Katherine M. McHail, Emma L. McInturff, Jamie M. Montgomery, Stacia M. Rink, and Don L. Warner; 2008 Idaho INBRE Research Conference; Boise, ID; August, 2008.

37. "Investigation of the C10 electrophilic site in DNA interstrand cross-linking by synthetic aziridinomitosenes" Emma L. McInturff, Katherine M. McHail, and Don L. Warner; 6th Annual Boise State Undergraduate Research Conference; April, 2009.

41. "Synthesis of Aziridinomitose Analog for Analysis of the Role of the C6 and C7 Electrophilic Sites in DNA Interstrand Crosslink Formation" Jeremy Daniels, Mikenna Summers, Dr. Don Warner; 2009 Idaho INBRE Research Conference; Pocatello, ID; August, 2009.

43. "Synthesis of Aziridinomitose Analog for Analysis of the Role of the C6 and C7 Electrophilic Sites in DNA Interstrand Crosslink Formation" Jeremy Daniels, Mikenna Summers, Dr. Don Warner; 2009 Donald S. Matteson Symposium in Organic Chemistry; Washington State University; Pullman, WA; October, 2009.

54. "Nucleophilic addition to 4-unsubstituted oxazolium salts to form five-membered nitrogen heterocycles" Daniels, Jeremy; Warner, Don L. From Abstracts of Papers, 241st ACS National Meeting, Anaheim, CA, United States, March 27-31, 2011.

CURRICULUM VITAE: June 2011
Denise G. Wingett, Ph.D.

Office Address:
Boise State University
Department of Biological Sciences, SN 111
1910 University Dr.
Boise, ID 83725

(208) 426-2921 (tel.)
(208) 426-1040 (fax)
denisewingett@boisestate.edu

Degrees:
Ph.D. 1991 Washington State University, Biochemistry
M.S. 1989 Washington State University, Biochemistry
B.S. 1986 Boise State University, Chemistry

Academic Appointments:
2010-present Professor and Chair, Department of Biological Sciences, Boise State University
2007-2010 Associate Professor and Associate Chair, Department of Biological Sciences, Boise State University
2007 Graduate Studies Coordinator, Department of Biological Sciences, Boise State University
2006-present Affiliate Faculty, Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine
2003-2007 Assistant Professor, Department of Biology, Boise State University
2002-2006 Research Assistant Professor, Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington School of Medicine
1998-present Research Associate, Mountain States Tumor and Medical Research Institute, Boise, ID

Relevant Experience:
1998-2004 Medical Research Scientist, Boise VA Medical Center
1995-1998 Assistant Medical Research Scientist, Boise VA Medical Center
1994-1995 Research Assistant Professor, Neuroimmunology Department, Portland VA Medical Center/Oregon Health Sciences University
1992-1994 Post-doctoral Fellow, Washington State University, with Dr. Nancy Magnuson
1986-1991 Doctoral Student, Washington State University, with Dr. Raymond Reeves

PART I - TEACHING
Formal Courses Taught
Boise State University (2003-present)
Cell Biology - Biol 301
Immunology - Biol 420/420G
Bioinformatics - Biol 446/546
Immunology Laboratory – Biol 497/597
Infection and Immunity - Biol 498/598
Advanced Topics in Immunology - Biol 497/597
Introduction to Bioinformatics - Biol 297
Advanced Topics in the Biology of Cancer & Immunology - Biol 466/566
Flow Cytometry Techniques – Biol 497/597

Washington State University (Fall 1993)
Immunology - Micro 412/512

Graduate Student Advising
Major Advisor:
Janet Layne (graduated 2011)
Ashley Masterson (graduated 2010)
Cory Hanley (graduated 2009)
Alma Hodzic (graduated 2007)
Kelli Matthies (graduated 2006)
Mark Headley (graduated 2005)
Panayiota Louka – current student

Graduate Committee Member:
Charlene Creech (graduated 2009)
Amanda Bruesch (graduated 2007)
Eric Hallingstad (graduated 2007)
Peter Mouser (graduated 2006)
Mike Butler (graduated 2006)
Chadwick Davis – current student
David Chang – current student
Katie Irwin – current student

PART II-RESEARCH

Referred Publications
4. Wingett D, Stone D, Davis WC, and Magnuson NS: Expression of the *pim-1* proto-oncogene:

Other Publications (selected)

Patents

Research Funding

2010-2011 Idaho State Board of Education: Development of a Biomolecular Immunology Lab Course: Integrating Advanced Technology, Bioinformatics, and 3-D Molecular Visualization ($19,800), Principal Investigator.

2010-2013 National Institutes of Health/National Cancer Institute: Preferential cytotoxic actions of metal oxide nanoparticles against cancer ($211,500), Principal Investigator.

2009-2010 Idaho State Board of Education: Development of a Biomolecular Immunology Lab Course ($104,800), Principal Investigator.

2009-2011 Department of Defense: Development of a West Nile Vaccine ($960,000; total award), Co-Principal Investigator.

2009-2011 Department of Defense: DNA Safeguard ($96,944; total award), Co-Principal Investigator.

2009-2012 National Science Foundation: MRI: Acquisition of an LC-MS for multidisciplinary research and education ($676,964; total award), Co-Principal Investigator.
2008-2011 National Science Foundation: MRI: Acquisition of a FACS to support collaborative research and education in biomolecular sciences and nanomaterials applications ($503,775), Principal Investigator.

2008-2010 Mountain States Tumor and Medical Research Institute: Utility of zinc oxide nanoparticles for selective cancer cell killing ($5,000), Principal Investigator.

2007-2008 Mountain States Tumor and Medical Research Institute: Feasibility of nanomedicine based approaches for treatment of autoimmune disease ($5,000), Principal Investigator.

2005-2009 National Institutes of Health: Altered cAMP regulation of CD40L in asthma, grant #1R15 AI06277-01A1 ($195,696), Principal Investigator.

2005-2006 National Institutes of Health: Utility of a novel anthracycline analog in psoriasis, grant #1R43 AR052955-01 ($146,172), Principal Investigator.

2005 Boise State University Faculty Research Associates Program ($5,000), Principal Investigator.

2005-2006 Mountain States Tumor and Medical Research Institute: Regulation of T cell CD40L gene expression ($5,000), Principal Investigator.

2005-2006 Boise State University Faculty Research Grant: Molecular mechanisms relevant to asthma that dysregulate CD40L ($5,000), Principal Investigator.

2004-2008 Gem Pharmaceuticals, LLC: Comparison of the dermatologic activities of Doxorubicin, GPX-100 and GPX-150 ($6,024), Principal Investigator.

2004-2005 Mountain States Tumor and Medical Research Institute: Identification of differentially expressed proteins on a regulatory NK cell subset in asthma ($5,000), Principal Investigator.

2004-2005 Boise State University Faculty Research Grant: Identification of molecular mechanisms leading to elevated CD40L protein in asthma ($5,000), Principal Investigator.

2003-2004 Mountain States Tumor and Medical Research Institute: Involvement of CD40L/CD40 interactions in Alzheimer’s disease ($5,000), Principal Investigator.

2003-2004 Idaho Biomedical Research Infrastructure Network Program of NIH, National Center for Research Resources: Seed Grant, Functional and phenotypic characterization of a novel asthma-associated NK cell subset ($25,000), Principal Investigator.

2003-2004 Idaho Biomedical Research Infrastructure Network Program of NIH, National Center for Research Resources: Equipment supplement for NIH-BRIN seed grant proposal ($56,222), Principal Investigator.

2002-2003 Mountain States Tumor and Medical Research Institute: Involvement of novel NK cell subpopulations in asthma ($5,000), Principal Investigator.

2001-2004 Department of Veterans Affairs: Altered cAMP regulation of CD40L in asthma ($472,700), Principal Investigator.
2002-2003 Mountain States Tumor and Medical Research Institute: Involvement of novel NK cell subpopulations in asthma ($5,000), Principal Investigator.

1998-2001 Department of Veterans Affairs: Aberrant cAMP regulation of T cell CD40L expression in asthma ($343,000), Principal Investigator.

1996-1997 Mountain States Medical Research Institute: CD40 signaling in breast and prostate carcinoma cells ($10,000), Principal Investigator.

Awards
2008 Health Care Hero Honoree, Educator Category, Idaho Business Review
2008 Women of the Year, Idaho Business Review
2008 Women Making Herstory Award, Boise State University Women’s Center
1993-1995 National Research Service Award, Department of Health and Human Services, Washington State University

Membership in professional organizations
American Association for the Advancement of Science, Associate Member
American Association for Cancer Research, Associate Member
American Association for Immunologists, Associate Member
Sigma Xi Scientific Research Society, Full Member

PART III-SERVICE
Professional Service
Professional Committee Involvement
2010 Study Section (ad hoc), National Science Foundation, Major Research Instrumentation
2010 Editorial Board, Journal of Nanoscience Letters
2009 Study Section (ad hoc), Center for Scientific Review SBIR/STTR, Small Business: Arthritis, Connective Tissue and Skin (ACTS), NIH
2005-2010 Council Board Member, Mountain States Tumor and Medical Research Institute, St. Luke’s Hospital, Boise, ID
2004-2006 Member, Central Idaho Asthma Coalition
2001-2002 Member of University Washington Human Subjects Review Committee (IRB), Seattle, Washington
2001-2003 Member of Research and Development Committee, Boise VAMC
2000-2001 Chairperson of Research and Development Committee, Boise VAMC
2000-2001 Chairperson of Scientific Review Subcommittee, Boise VAMC
1999-2005 Chairperson of Hospital Radiation Safety Committee, Boise VAMC
1998 Acting Cancer Section Head, Mountain States Medical Research Institute, Boise, ID

Institutional Service
University Committees
2007-present Member, Biomolecular Sciences Ph.D. Curriculum Committee, BSU
2007-2009 Member, University Patent Committee, BSU
2007-2009 Member, University Top-Ten Scholars Selection Committee, BSU
2005 Member, University Chemical Hygiene Committee, BSU
2004-present Member, University Radiation Safety Committee, BSU
2004 Member, Idaho BRIN Summer Research Undergraduate Fellowship
 Selection Committee, BSU

Departmental Committees
2010-present Chair, Department of Biological Sciences, BSU
2007-2010 Associate Chair, Department of Biological Sciences, BSU
2009-2010 Member, Promotion & Tenure Committee, Dept. Biological Sciences, BSU
2007 Director, Graduate Studies Program, Dept. Biological Sciences, BSU
2004-2010 Member, Graduate Studies Committee, Dept. Biological Sciences, BSU
2006 Member, Raptor Research Student Grant Selection Committee, BSU
2005 Member, Systematist Faculty Position Search Committee, BSU
2005 Member, Raptor Research Student Grant Selection Committee, BSU
2004 Member, Environmental Microbiologist Faculty Search Committee, BSU
2003 Member, Microbiologist Faculty Position Search Committee, BSU

University-related projects
2008 Speaker, forum for new BSU faculty hires
2006 Judge for Undergraduate Research and Scholarship Conference
2005 Speaker, forum for NIH grant seekers, Sept. 22nd
2005 Departmental representative for BSU Graduate & Professional School Day, Oct. 27th
2004 Departmental representative for BSU Graduate & Professional School Day, Oct. 28th
2004 Co-host for the 4th Virtual Conference on Genomics and Bioinformatics, Sept. 21-24
BIOGRAPHICAL SKETCH

Provide the following information for the key personnel involved in this project.
Photocopy this page for follow this format for each person.

<table>
<thead>
<tr>
<th>Name</th>
<th>Position Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danny Xu</td>
<td>Assistant Professor (Tenure-Track)</td>
</tr>
</tbody>
</table>

Education/Training (begin with baccalaureate or other initial professional education, such as nursing, and includes postdoctoral training)

<table>
<thead>
<tr>
<th>Institution and Location</th>
<th>Degree (if applicable)</th>
<th>Year(s)</th>
<th>Field of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nan Kai University, China</td>
<td>B.S.</td>
<td>1996</td>
<td>Chemistry</td>
</tr>
<tr>
<td>San Diego State University</td>
<td>M.S.</td>
<td>2003</td>
<td>Computational Chemistry</td>
</tr>
<tr>
<td>San Diego State University</td>
<td>Ph.D.</td>
<td>2007</td>
<td>Computational Chemistry</td>
</tr>
<tr>
<td>University of California, San Diego</td>
<td>Postdoc</td>
<td>2007-2010</td>
<td>Computational Biochemistry</td>
</tr>
</tbody>
</table>

A. Positions and Honors

Positions and Employment

2000 – 2007 Graduate Teaching Associate, San Diego State University
2003 – 2003 Software Engineering Intern, SONY Technology Center, San Diego
2007 – 2010 Postdoctoral Research Scientist, University of California, San Diego
2010 – present Assistant Professor, Dept. of Chemistry and Biochemistry, Boise State University

Professional Memberships

2000 – present Member, American Chemical Society
2009 – present Member, Biophysical Society
2009 – present Member, Sigma Xi, The Scientific Research Society
2005 – present Member, American Association of Pharmaceutical Sciences

Media and News Coverage

B. Selected Peer-Reviewed Publications

B. List of Current Support

Boise State University New Faculty Start-up Fund $200,000 (Award Date: 08/01/10)
St. Luke's Mountain States Tumor and Medical Research Institute Small Project Grant $7,500 (Award Date: 05/26/11)
NSF Teragrid New PI Start-up Allocation TG-MCB110009 100,000SU (Award Date: 10/20/10 - 10/20/11)
DOE INCITE Computing Allocation at Oak Ridge National Lab World #1 Supercomputer Jaguar XT5 1,000,000 SU (Award Date: 07/01/10 - 07/31/11)
DOE Idaho National Laboratory Computing Allocation (Award Date: 12/07/10)